PERFORMANCE OF MONTANA HIGHWAY PAVEMENTS DURING SPRING THAW

by

Dr. Vincent Janoo and Alan Greatorex

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA	/MT-02-006/8155	2. Government Accession No. 3. Recipient's Catalog No.					
4. Title and Subtitle	•• · · •• •	5. Report Date December 2002					
Performance of Pavements Duri	Montana Highway ng Spring Thaw	6. Performing Organization Code					
7. Author(s) Dr Vincent Jano	o and Alan Greatorex	8. Performing Organization Report No.					
9. Performing Organiza	tion Name and Address	10. Work Unit No.					
US Army Engine Development Ce 72 Lyme Rd	eering Research and enter - CRREL	11. Contract or Grant No. 8155					
Hanover NH 037	55-1290						
12. Sponsoring Agency Research Burea Montana Depart	/ Name and Address U ment of Transportation	13. Type of Report and Period Covered Final November 2000-Novemb	er 2002				
2701 Prospect A PO Box 201001 Helena MT 5962	venue 0-1001	14. Sponsoring Agency Code 5401					
15. Supplementary Not Transportation a	es Research performed in and the US Department of Tra	cooperation with the Montana D nsportation, Federal Highway Ac	Department of Iministration.				
16. Abstract							
16. Abstract Highway pavements in seasonal frost areas undergo annual freeze-thaw cycles. Pavements constructed for the design load capacity can become weak during spring thaw. In 1995, the Montana Department of Transportation (MDT) initiated a study on developing road restrictions during the spring thaw. Selected sites throughout Montana were instrumented. Field measurements of deflection, moisture, and temperature were made during the winter/spring of 1996–1997 and 1997–1998. The analysis determined thaw-weakening characteristics of the sites and developed subgrade modulus values for use in future design of pavement structures in Montana. Based on the moisture data, the base course layers at Dickey Lake, Wolf Point, Scobey/Redstone, and East Glacier are prone to thaw weakening. Deflection data indicate that the bases at Bull Mountain, Swan Lake, and Scobey Redstone may be prone to thaw weakening. The subgrade at Dickey Lake, East Glacier, Bull Mountain, Swan Lake, and Scobey/Redstone) to 3 weeks (East Glacier). This report provides a general description of the test sites, the measurements and analysis of the data, results of the analysis, and recommendations based on the results. In addition, the report quantifies the effects of thaw weakening on typical roads in Montana based on deflection, surface and subsurface moisture, temperature, and other atmospheric measurements taken by MDT.							
17. Key Words Pave Moisture, Tempo Subgrade.	ments, Thaw weakening, erature, Moduli, Base,	18. Distribution Statement Unrestricted. This document is available through the National Technical Information Service, Springfield, VA 21161.					
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 120	22. Price				

DISCLAIMER STATEMENT

This document is disseminated under the sponsorship of the Montana Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Montana and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Montana Department of Transportation or the United States Department of Transportation

The State of Montana and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document

This report does not constitute a standard, specification, or regulation.

ALTERNATIVE FORMAT STATEMENT

The Montana Department of Transportation attempts to provide reasonable accommodations for any known disability that may interfere with a person participating in any service, program, or activity of the Department. Alternative accessible formats of this document will be provided upon request. For further information, call (406)444-7693 or TTY (406)444-7696.

Table of Contents

ABSTRACT	1
INTRODUCTION	2
SITE DESCRIPTION	
FIELD INSTRUMENTATION AND TESTING PROGRAM	4
ENVIRONMENTAL DATA ANALYSIS	7
Dickey Lake	
Wolf Point	19
Sweetgrass	
Scobey/Redstone	
East Glacier	
BACK-CALCULATION OF LAYER MODULI	
Discussion Of Weather Data	
Estimating Resilient Modulus Data	53
SUMMARY AND RECOMMENDATIONS	60
REFERENCES	
APPENDIX A: Temperature-Moisture Data	
APPENDIX B: Back-calculated Modulus	
Alzada	
Bull Mountain	
Livingston	
Wolf Point	
Swan Lake	
Loma	
East Glacier	
Sweetgrass	
Scobey/Redstone	91
Dickey Lake	
APPENDIX C: Design Information	
Dickey Lake	94
Wolf Point	96
Sweetgrass	
Scobey / Redstone	
East Glacier	
Alzada	
Bull Mountain	
Livingston	
Loma	
Swan Lake	

FIGURES

Figure 1. Location of test sites in Montana	3
Figure 2. Definitions of critical and recovery periods used in the analysis.	9
Figure 3. Base course grain size distribution at Dickey Lake	12
Figure 4. Subgrade grain size distribution at Dickey Lake.	12
Figure 5. Air-freezing index at Dickey Lake for winter/spring 1996–1997 and 1997–1998	13
Figure 6. Base freezing index for winter/spring 1996–1997 at Dickey Lake	14
Figure 7. Ground freezing index for top of subgrade for winter/spring 1996–1997 at Dickey Lake	16
Figure 8. Base course grain size distribution at Wolf Point	20
Figure 9. Subgrade grain size distribution at Wolf Point.	20
Figure 10. Base course grain size distribution at Sweetgrass	24
Figure 11. Subgrade grain size distribution at Sweetgrass	24
Figure 12. Base course grain size distribution at Scobey/Redstone	27
Figure 13. Subgrade grain size distribution at Scobey/Redstone	
Figure 14. Base course grain size distribution at East Glacier	
Figure 15. Subgrade grain size distribution at East Glacier.	
Figure 16. Back-calculated subgrade modulus and moisture content as a function of time at Dickey Lake	
Figure 17. Back-calculated base modulus and moisture content as a function of time at East Glacier	
Figure 18. Results of prediction of subgrade modulus at Dickey Lake.	53
Figure 19. Results of prediction of subgrade modulus at East Glacier.	54
Figure A-1. Moisture plots for Dickey Lake	64
Figure A-2. Moisture plots for Wolf Point.	65
Figure A-3. Moisture plots for Wolf point	66
Figure A-4. Moisture plots for Sweetgrass.	67
Figure A-5. Moisture plots for Sweetgrass.	68
Figure A-6. Moisture plots for Redstone.	69
Figure A-7. Moisture plots for Redstone.	70
Figure A-8. Moisture plots for East Glacier	71
Figure A-9. Moisture plots for East Glacier	72
Figure A-10. Temperature plots for Dickey Lake	73
Figure A-11. Temperature plots for Wolf Point	74
Figure A-12. Temperature plots for Wolf Point	75
Figure A-13. Temperature plots for Sweetgrass.	76
Figure A-14. Temperature plots for Sweetgrass.	77
Figure A-15. Temperature plots for Redstone.	78
Figure A-16. Temperature plots for Redstone.	79
Figure A-17. Temperature plots for East Glacier	80
Figure A-18. Temperature plots for East Glacier	81
Figure B-1. Back-calculated base modulus as a function of time for Alzada.	
Figure B-2. Back-calculated subgrade modulus as a function of time for Alzada	
Figure B-3. Back-calculated base modulus as a function of time for Bull Mountain.	
Figure B-4. Back-calculated subgrade modulus as a function of time for Bull Mountain	
Figure B-5. Back-calculated base modulus as a function of time for Livingston.	
Figure B-6. Back-calculated subgrade modulus as a function of time for Livingston.	
Figure B-7. Back-calculated base modulus as a function of time for Wolf Point	
Figure B-8. Back-calculated subgrade modulus as a function of time for Wolf Point	
Figure B-9. Back-calculated base modulus as a function of time for Swan Lake	
Figure B-10. Back-calculated subgrade modulus as a function of time for Swan Lake	87
Figure B-11. Back-calculated base modulus as a function of time for Loma.	
Figure B-12. Back-calculated subgrade modulus as a function of time for Loma	
Figure B-13. Back-calculated base modulus as a function of time for East Glacier	
Figure B-14. Back-calculated subgrade modulus as a function of time for East Glacier	
Figure B-15. Back-calculated base modulus as a function of time for Sweetgrass	90
Figure B-16. Back-calculated subgrade modulus as a function of time for Sweetgrass	90

Figure B-17. Back-calculated base modulus as a function of time for Scobey/Redstone	91
Figure B-18. Back-calculated subgrade modulus as a function of time for Scobey/Redstone	
Figure B-19. Back-calculated base modulus as a function of time for Dickey Lake.	
Figure B-20. Back-calculated subgrade modulus as a function of time for Dickey Lake	
Figure C-1. Design data for Dickey Lake.	
Figure C-2. Design data for Wolf Point.	
Figure C-3. Design data for Sweetgrass	
Figure C-4. Design data for Scobey/Redstone.	
Figure C-5. Design data for East Glacier.	
Figure C-6. Design data for Alzada.	
Figure C-7. Design data for Bull Mountain.	
Figure C-8. Design data for Livingston.	
Figure C-9. Design data for Loma.	
Figure C-10. Design data for Swan Lake.	

Tables

Table 1. Layer material type and thickness	4
Table 2. Location of VITEL sensors for measuring moisture, temperature, and salinity.	6
Table 3. Location of weather station sites relative to test sites.	8
Table 4. Estimated frost depth and period of freezing from measured temperatures and moisture content	10
Table 5. Summary of freezing, thaw-weakening periods, and moisture contents at Dickey Lake	
Table 6. Summary of freezing and thaw-weakening periods, and moisture contents at Wolf Point	
Table 7. Summary of freezing, thaw-weakening periods and moisture contents at Sweetgrass	
Table 8. Summary of freezing, thaw-weakening periods and moisture contents at Scobey/Redstone	29
Table 9. Summary of freezing, thaw-weakening periods and moisture contents at East Glacier, 1996–1997 winter	
Table 10. Initial and range of layer roduli used in WESDEF.	
Table 11. Back-calculated layer moduli at Dickey Lake.	
Table 12. Back-calculated layer moduli at Wolf Point.	
Table 13. Back-calculated layer moduli at Sweetgrass	
Table 14. Back-calculated layer moduli at Scobey/Redstone.	41
Table 15. Back-calculated layer moduli at East Glacier.	
Table 16. Back-calculated layer moduli at Alzada.	
Table 17. Back-calculated layer moduli at Bull Mountain.	
Table 18. Back-calculated layer moduli at Livingston.	
Table 19. Back-calculated layer moduli at Loma.	
Table 20. Back-calculated layer moduli at Swan Lake.	
Table 21. Average monthly subgrade moduli (Sept. 1996–Aug. 1997 data).	
Table 22. Average monthly base moduli (Sep. 1996–Aug. 1997 data).	
Table 23. Average monthly subgrade moduli (Sep. 1997–Aug. 1998 data).	
Table 24. Average monthly base moduli (Sep. 1997–Aug. 1998 data).	
Table 25. Annual and seasonal precipitation effects on resilient modulus	
Table 26. Resilient modulus measurements and when they were taken relative to the critical period.	
Table 27. Effective subgrade resilient modulus.	
Table 28. Monthly subgrade soil modulus and relative damages at Dickey Lake, Wolf Point, Sweetgrass,	FC
Scobey/Redstone and East Glacier (1996–1997).	
Table 29. Monthly subgrade soil modulus and relative damages at Alzada, Bull Mountain, Loma, Livingston, and S	swan
Lake (1990–1997)	
Table 50. Monully subgrade son modulus and relative damages at Dickey Lake, won Fond, Sweetgrass, Sashay/Dadstone and East Classer (1007, 1008)	59
Table 31 Monthly subgrade soil modulus and relative demogras at Alzada, Bull Mountain Long, Livingston, and S	
Lake (1007–1008)	50 50
Table C. 1. Gradation abgractaristics for base and subgrade at Dickay I aka	
Table C-1. Gradation characteristics for base and subgrade at Dickey Lake	
Table C-2. Gradation characteristics for base and subgrade at Wolf Politic	00
Table C-5. Gradation characteristics for base and subgrade at Sochev/Redstone	101
Table C-7. Gradation characteristics for base and subgrade at East Glacier	103
Table C-6 Gradation characteristics for base and subgrade at Alzada	105
Table C-7 Gradation characteristics for base and subgrade at Rull Mountain	107
Table C-8 Gradation characteristics for base and subgrade at Livingston	100
Table C-9. Gradation characteristics for base and subgrade at Lowns	111
Table C-10 Gradation characteristics for base and subgrade at Swan Lake	113
ruble C 10. Studuton characteristics for base and subgrade at Swall Lake.	

ABSTRACT

Highway pavements in seasonal frost areas undergo annual freeze-thaw cycles. Pavements constructed for the design load capacity can become weak during spring thaw. In 1995, the Montana Department of Transportation (MDT) initiated a study on developing road restrictions during the spring thaw. Selected sites throughout Montana were instrumented. Field measurements of deflection, moisture, and temperature were made during the winter/spring of 1996–1997 and 1997–1998. The analysis determined thaw-weakening characteristics of the sites and developed subgrade modulus values for use in future design of pavement structures in Montana. Based on the moisture data, the base course layers at Dickey Lake, Wolf Point, Scobey/Redstone, and East Glacier are prone to thaw weakening. Deflection data indicate that the bases at Bull Mountain, Swan Lake, and Scobey Redstone may be prone to thaw weakening. The subgrade at Dickey Lake, East Glacier, Bull Mountain, Swan Lake, and Scobey/Redstone may also be prone to thaw weakening. The length of the thawweakening period varied from 4 days (Scobey/Redstone) to 3 weeks (East Glacier). This report provides a general description of the test sites, the measurements and analysis of the data, results of the analysis, and recommendations based on the results. In addition, the report quantifies the effects of thaw weakening on typical roads in Montana based on deflection, surface and subsurface moisture, temperature, and other atmospheric measurements taken by MDT.

Keywords: Pavements, Thaw weakening, Moisture, Temperature, Moduli, Base, Subgrade.

INTRODUCTION

Highway pavements in seasonal frost areas undergo annual freeze-thaw cycles. Pavements constructed for the design load capacity can become weak during spring thaw. During the winter, water is drawn up to the freezing front from shallow water tables by capillary action and converted to ice lenses. This formation of ice lenses is manifested on the surface as frost heave. During the spring, the ice lenses are converted back to liquid water and, depending on the hydraulic conductivity of the subsurface layers, these layers can become saturated. In addition, more moisture can be introduced into the subsurface layers from infiltration of melting snow and rain from the surface. As a result, the bearing capacity of the base, subbase, or subgrade, or all three, can be reduced and damage may be observed on the surface as potholes, alligator cracking, or rutting. The amount of damage can vary. However, it has been reported that 90% of the damage to pavements can occur during the thawweakening periods. To reduce this damage, load restrictions need to be applied during these periods. However, the timing and length of the load restriction period can be a financial burden to the trucking industry and need to be determined with care.

In 1995, the Montana Department of Transportation (MDT) initiated a study on developing road restrictions during the spring thaw. The project began with field studies to identify the extent of the effects of thaw weakening on highway pavements. Selected sites throughout Montana were instrumented. Attempts were made to obtain field measurements of deflection, moisture, and temperature during the winter/spring seasons of 1996–1997 and 1997–1998. Measurements were made to cover the four periods in a freeze–thaw cycle: period of deep frost, period of rapid strength loss, period of rapid strength recovery, and period of slow strength recovery (Shepherd and Vosen 1997).

The U.S. Army Engineer Research and Development Center's Cold Regions Research and Engineering Laboratory (CRREL) was contracted by MDT to assist in the analysis of the test data from 10 sites. The analysis was to determine the thaw-weakening characteristics of the sites and to develop subgrade modulus values for use in the future design of pavement structures in Montana. This report provides a general description of the test sites, the measurements and analysis of the data, results of the analysis, and recommendations based on the results. In addition, the report quantifies the effects of thaw weakening on typical roads in Montana, based on deflection, surface and subsurface moisture, temperature, and other atmospheric measurements taken by MDT.

2

SITE DESCRIPTION

Ten sites were chosen throughout the state of Montana for this project based on their subgrade soil classification, geologic region, and their closeness to weather monitoring stations (Shepherd and Vosen 1997) (Figure 1). Montana can be divided into two geologic regions (Shepherd and Vosen 1997). These are the Rocky Mountain and the Plains regions. Sites representing the Rocky Mountain region include East Glacier, Sweetgrass, Swan Lake, Dickey Lake, and Livingston. Loma, Scobey/Redstone, Alzada, Roundup/Bull Mountain, and Wolf Point represent the Plains region.

Figure 1. Location of test sites in Montana.

All the pavement structures in this study were flexible pavements, which represent 97% of Montana roads (Shepherd and Vosen, 1997). With the exception of Swan Lake, the pavement structure at the sites consisted of an asphalt concrete layer over an unstabilized base, over the natural subgrade. At Swan Lake, in addition to the base course, there was a subbase layer over the natural subgrade. The asphalt concrete layers at the test sites ranged from 76 to 330 mm (3 to 13 in.), and base thickness ranged from 138 to 686 mm (5.5 to 27 in.). The subgrade soil classifications are based on the American Association of State Highway Transportation Officials (AASHTO, 2002) system. The subgrade soils, based on the top 0.6 m (2 ft), were classified as A-2, A-4, or A-6. Site names, AASHTO soil classifications of the base and subgrade, and road layer thickness are given in Table 1. Other soil tests conducted by MDT were for moisture content and R-values. Available gradation and Atterberg limit test results for some of the sites are presented in Appendix C.

0.1		Layer thicknesses						
Site name	Subgrade	Asphalt mm (in.)	Base mm (in.)	Subbase mm (in.)				
Loma	A-1	152 (6)	686 (27)	No subbase				
East Glacier	A-4	76 (3)	584 (23)	No subbase				
Sweetgrass	A-6	330 (13)	483 (19)	No subbase				
Swan Lake	A-1	122 (4 ¾)	122 (4 ¾) *	127 (5)				
Dickey Lake	A-2-4	127 (5)	427 (17)	No subbase				
Scobey/Redstone	A-6	229 (9)	140 (5 ½)	No subbase				
Alzada	A-6	235 (9 ¼)	603 (24)	No subbase				
Livingston	A-1	152 (6)	518 (20 ½)	No subbase				
Roundup/Bull Mtn	A-4	254 (10)	432 (17)	No subbase				
Wolf Point	A-6	178 (7)	152 (6)	No subbase				

Table 1. Layer material type and thickness.

*Pulverized plant mix surfacing (PMS).

Of the 10 sites, only two have any amount of shading that would increase frost penetration and delay thaw weakening. They are Dickey Lake, which is located on the north side of a hill, and Swan Lake, which is located among trees.

FIELD INSTRUMENTATION AND TESTING PROGRAM

Each test site was instrumented with VITEL Hydra Soil Probes. Subsurface soil temperature, soil dielectric constant, and soil conductivity were measured hourly with these probes and recorded with VX1004 data loggers, manufactured by VITEL, Inc., Chantilly, Virginia.

A brief summary of the probe is given here. Basically, it is a moisture probe. It determines the soil moisture and salinity from a 50-MHz high-frequency complex dielectric constant measurement. The dielectric constant can be separated into its real and imaginary components. The real component has been shown to be sensitive to the moisture content of the soil. The imaginary (conductive) com-

ponent can be related to the salinity of the soil. Subsurface temperatures were directly measured using thermistors located in the probe head. The volumetric moisture content is determined from calibration equations provided by VITEL for sands, silts, and clays. These calibrations are part of the data acquisition system provided by VITEL. Sensor locations provided by the MDT are shown in Table 2.

In October 1997, the VITEL probes at seven sites were checked by CRREL and 64% of the sensors were found to be fully operational. With respect to temperature, we found that 94 % of the sensors were functioning properly.

In addition to the subsurface instrumentation, the sites were located in areas where Road Weather Information Systems (RWIS) were available. Plans were made initially to supplement the VITEL data with data from the SSI system. However, when the data were reviewed, we found that data from the SSI sensors were recorded at irregular intervals, based on how often the closest weather station dialed into the site. Because of this irregularity and also because only 36% of the data were available for the analysis period (1996–1997), measurements from the SSI system were not used. Also, no data were found for Bull Mountain and only a few readings were found for Livingston, East Glacier, and Alzada.

Pavement deflection measurements for the 1996–1997 period were obtained nondestructively with the MDT Road Rater, manufactured by Foundation Mechanics, Inc. (Foundation Mechanics, no date specified), El Segundo, California. Surface deflections were measured from steady-state dynamic loads (9 to 22 kN, or 2000 to 5000 lb). The loads were applied through a 305-mm-diameter steel plate at a frequency of 25 Hz. Deflections were measured at distances of 0, 203 (8), 305 (12), 610 (24), 914 (36), and 1219 mm (48 in.) from the center of the plate.

For the 1997–1998 period, deflection measurements were made with the JILS-20T falling weight deflectometer (FWD). The deflections were measured at distances of 0, 203 (8), 305 (12), 458 (18), 610 (24), 914 (36), and 1219 mm (48 in.) from the center of the plate. The falling weight loads ranged from 27 to 71 kN (6000 to 16,000 lb). Based on test data notes, the JILS-20T FWD system replaced the Road Rater about at the end of September 1997. Comparison measurements were made at Dickey Lake, Sweetgrass, and Loma using both the Road Rater and the FWD.

5

Site nome	VITEL sensor depths (mm from pavement surface)										
Site name	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7	Sensor 8	Sensor 9		
Diakov Lako	292	584	813		1168	1468	†				
DICKEY LAKE	(11 ½ in.)	(23 in.)	(32 in.)	IVID	(46 in.)	(57 ¾ in.)			_		
Wolf Doint	229	381	762	914	1118	1422	1803				
	(9 in.)	(15 in.)	(30 in.)	(36 in.)	(44 in.)	(56 in.)	(71 in.)		_		
Sweetgroop	2289	1887	1586	1387	1237	1087	864	572			
Sweetgrass	(90 in.)	(74 ¼ in.)	(62 ½ in.)	(54/ ½ in.)	(48 ¾ in.)	(42 ¾ in.)	(34 in.)	(22 ½ in.)			
Saabay/Padatana	305	445	673	813	965	1168	1473	1867			
Scobey/Redstone	(12 in.)	(17 ½ in.)	(26 ½ in.)	(32 in.)	(38 in.)	(46 in.)	(58 in.)	(73 ½ in.)			
East Clasion	457	737	1110	1260	1461	1760	2161				
East Glacier	(18 in.)	(29 in.)	(43 ¾ in.)	(49 ½ in.)	(57 ½ in.)	(69 ¼ in.)	(85 in.)	_			
Alzada	279	808	960	1138	1288	1438	1638	1938	2339		
Aizaua	(11 in.)	(31 ¾ in.)	(37 ¾ in.)	(44 ¾ in.)	(50 ¾ in.)	(56 ½ in.)	(64 ½ in.)	(76 ¼ in.)	(92 in.)		
Pull Mountain	432	665	902	1207	1422	1702	2108				
Buil Mouritain	(17 in.)	(26 ¼ in.)	(35 ½ in.)	(47 ½ in.)	(56 in.)	(67 in.)	(83 in.)		_		
Livingston	229	411	747	970	1270	1473	1778	2159			
Livingston	(9 in.)	(16 ¼ in.)	(29 ½ in.)	(38 ¼ in.)	(50 in.)	(58 in.)	(70 in.)	(85 in.)	_		
Lomo	541	960	1184	1483	1684	1984	2385				
LUIIIa	(21 ¼ in.)	(37 ¾ in.)	(46 ½ in.)	(58 ¼ in.)	(66 ¼ in.)	(78 in.)	(94 in.)	—	—		
Swan Lake	668	818	968	1168	1468	1869					
Swall Lake	(26 ¼ in.)	(32 ¼ in.)	(38 in.)	(46 in.)	(57 ¾ in.)	(73 ½ in.)					

Table 2. Location of VITEL sensors for measuring moisture, temperature, and salinity.

* MD = Missing Data (sensor installed at unknown depth). † Indicates that sensor string has no sensors with that number.

For the 1996–1997 period, deflection measurements were taken monthly throughout the year, with the exception of spring, when they were taken biweekly. The test program consisted of one drop at each test point between 9 and 22 kN. The test section size of 30.5 m was selected in such a way that half the section was either to the right or left of the location where the VITEL probes were installed. The test points were 1.5 m. apart. A total of 21 non-destructive testing (NDT) tests were conducted for each site using the "Road Rater" for most of the year.

During our analysis, we found that, during the spring thaw period, deflection tests were conducted at four or five test points. In addition to NDT testing, air temperature and, in some instances, pavement temperatures were recorded during the tests. Pavement temperatures included surface temperatures and temperature in the middle of the asphalt concrete (AC) layer (defined by MDT as the "material" temperatures).

In the 1997–1998 season, when the JILS 20-T (annotated JILS 201 in the data remarks) was used, each location had 20 tests per date. Some sites were tested at least once per month, and during February, March, and April, there were multiple tests, up to four in one instance. The system was normally programmed to apply four loads, but occasionally three or five loads were programmed. In other instances, the system was programmed to apply one load four times, and then the sequence was repeated with three or four other loads. The normal loads used were 26.7, 35.6, 40.0, and 44.5 kN (6000, 8000, 9000, and 10,000 lb), with 26.7, 40.0, 53.4, and 62.3 or 66.7 kN (6000, 9000, 12,000, and 14,000 or 15,000 lb) occasionally used.

ENVIRONMENTAL DATA ANALYSIS

Approximate coordinates for the test sites were obtained through discussions with Montana DOT personnel. Air temperature data for the sites were obtained from the National Weather Service. The weather stations were chosen based on proximity to the test site. The coordinates of the test sites and the nearest weather station are shown in Table 3 below. Some data gaps are present, but they are not critical. However, deflection data were available and were analyzed.

Test site	Latitude	Longitude	NWS station	Latitude	Longitude
Dickey Lake	48° 42'N	114° 48'W	Fortine 1 N	48° 47'N	114° 54'W
Wolf Point	48° 39'N	105° 26'W	Scobey 4NW	48° 50'N	105° 29'W
Sweetgrass	48° 59'N	111° 57'W	Sweetgrass	49° 00'N	111° 58'W
Redstone	48° 49'N	105° 01'W	Bredette	48° 33'N	105° 16'W
East Glacier	48° 27'N	113° 13'W	East Glacier	48° 27'N	113° 13'W
Alzada	45° 01'N	104° 25'W	Albion 1 N	45° 13'N	104° 16'W
Bull Mtn.	46° 14'N	108° 27'W	Roundup	46° 27'N	108° 33'W
Livingston	45° 39'N	110° 32'W	Livingston Mission Field	45° 42'N	110° 26'W
Loma	47° 56'N	110° 30'W	Loma 1 WNW	47° 57'N	110° 32'W
Swan Lake	47° 30'N	113° 41'W	Lindbergh Lake	47° 25'N	113° 43'W

Table 3. Location of weather station sites relative to test sites.

Several of the VITEL probes failed 5 to 6 months after installation. For example, five out of the six probes at Swan Lake stopped functioning within 5 months from installation and five out of eight probes at Livingston stopped functioning within 6 months from installation. A power surge, possibly from lightning, was thought to be the most likely cause according to MDT. In addition, we found that data were missing during the winter and thaw periods in Alzada. Results from these sites were not used in the analysis. Additional probes, and probes at additional sites, failed during the following year (1997–1998).

The subsurface moisture, in conjunction with deflection data, was used to determine if the pavement structure was susceptible to thaw weakening. When deflection data are unavailable, the moisture contents can provide a good indication of the thaw-weakening susceptibility of the base and subgrade. A good illustration of this is the moisture data in the base course from Dickey Lake (Figure 2). As seen in Figure 2, the moisture content in the base increased sevenfold from its non-frost value during the spring thaw. This increase translates to a period of weakening.

Figure 2. Definitions of critical and recovery periods used in the analysis.

For our analysis (see Figure 2), the non-frost moisture content was taken as the average mean moisture content for October, when the mean ground temperature was still positive. The unfrozen moisture content during the winter is the average moisture content where the ground temperature is stable at its lowest temperature. The critical period, determined using the moisture data, is the time when the moisture content exceeds the non-frost value during the spring thaw to its maximum value. Recovery is at the end of the maximum value to the time when it levels out to either the non-frost level or just close to it.

Moisture and temperature data were recorded hourly. The hourly moisture contents and temperatures were converted to daily mean values and are presented in Appendix A. The subsurface temperature data provided information on the length of the freezing season and was used to estimate the maximum frost penetration. In addition, when available, daily mean air temperatures at or near the site is presented in Appendix A. The frost depth presented in Table 4 is defined as the maximum depth where the temperature reached 0°C. (For the 1997–1998 winter, the frost depth was interpolated from the Vitel probe temperature data. This was done using the deepest probe that indicated

9

below freezing temperatures, and the temperature indicated by the next deeper probe.) The time that the ground is frozen is defined as the period (to the nearest month) when the ground temperature remains below 0° C.

Location	Frost de	epths (m)	Period of freezing			
	1996–1997 1997–1998		1996–1997	1997–1998		
Loma	2.39	*	December–April	_		
East Glacier	2.16		September-April	_		
Sweetgrass	2.29	1.60	September-April	November-March		
Swan Lake	_		_	_		
Dickey Lake	>1.60 [†]	1.32	November–April	November-March		
Scobey/Redstone	>1.88 [†]	1.85	September-April	November–April		
Alzada	>1.93 [†]	_	_	_		
Livingston	vingston >1.27 [†] —		_	_		
Bull Mountain	1.70	_	_	_		
Wolf Point	>1.80 [†]	1.66	September-April	November–April		

 Table 4. Estimated frost depth and period of freezing from measured temperatures and moisture content.

* Insufficient to note the trend or missing temperature data.

† Frost penetration exceeded the deepest measurement sensor.

Thaw weakening is caused by excess moisture and the rate of dissipation in the pavement structure. On the basis of the moisture distribution in the pavement structure, we can surmise the potential for thaw weakening. Detailed descriptions of the seasonal moisture variation in the base and subgrade at five sites are given below: Dickey Lake, Wolf Point, Sweetgrass, Scobey/Redstone, and East Glacier. At these sites there were complete or near complete temperature and moisture data in the base and subgrade. (However, East Glacier moisture and temperature data were not collected for the 1997–1998 season.) Unfortunately, the selected sites were in the northern half of the state.

Dickey Lake

The base and subgrade gradation, as obtained during the instrumentation stage, are shown in Figures 3 and 4. Details of the gradation and Atterberg limits are presented in Table C-1. Under the

AASHTO soil classification system (AASHTO, 2002), the base was an A-1-a soil. Bedrock was found at a depth of 1.5 m (58 in.) from the surface. The subgrade was found to vary with depth. The top 900 mm (36 in.) ranged between an A-2-4 and A-4 soil (Table C-1). The bottom part of the subgrade turned out to be more granular and was classified as an A-1-b subgrade. The percentage of material finer than the 0.075-mm (#200) sieve size in the base ranged between 10 and 13%, and in the subgrade, between 18 and 37%. On the basis of the plasticity index, the fines were classified as non-plastic. Initial gravimetric moisture contents taken at the time of instrumentation installation (mid-November 1995) ranged between 8 and 10% in the base and between 13 and 18% in the subgrade. The moisture measurements in the subgrade were taken at depths between 686 and 1270 mm (27 and 50 in.). The depth of the water table was not reported.

The moisture and temperature response during the fall-winter-spring seasons of 1996–1997 and 1997–1998 in the base and subgrade are shown in Figure A-1. Based on the temperature measurements, frost penetration reached at least to a depth of 1.6 m (60 in.) in 1996–1997, and about 1.35 m (about 54 in.) in 1997–1998. The minimum average air temperature during the 1996–1997 winter was –22°C. The air freezing index^{*} for the winter-spring of 1996–1997 was greater than 792°C degree-days (1425°F degree-days) (see Figure 5). (As the air temperature data for November are missing, there is no indication of how much greater the freezing index would have been. However, it is safe to assume that the November data would have increased the freezing index.) Based on the air freezing index, the freezing season started when the air freezing index was at its maximum (November 14th, 1996 and November 8th, 1997).

^{*} Air freezing Index is the measure of the departure of the mean daily temperature below a given standard, 0°C (32°F); these departures, called freezing degree days, are summed over a season to give the air freezing index. For example, a day with an average temperature of -5°C (23°F) represents 9 freezing degree-days by the Fahrenheit scale (5 freezing degree-days by the Celsius scale).

Percent Finer

Percent Finer

Figure 4. Subgrade grain size distribution at Dickey Lake.

12

Figure 5. Air-freezing index at Dickey Lake for winter/spring 1996–1997 and 1997–1998.

The measurements in the base were made at a depth of 292 mm (11 in.) from the AC surface, which is about the mid-point of the base layer. Prior to freezing, the mean daily volumetric moisture content in the base was approximately 5.5% (COV = 8.8%) at the start of the 1996–1997 winter, and 6.7% (COV = 5.4%) at the start of the 1997–1998 winter. This is based on the average of the moisture measurements for October. This suggests that the base is a fairly dry material. Although the base was classified as an A-1-a soil, there was a substantial increase in moisture content during the 1997 thaw (~4× the non-frost value). Based on the moisture data, thawing started around March 20th 1997, when the moisture content was greater than 5.5%. The temperature in the base at this time was -2.2° C. The next day (March 21st), the moisture content in the base was approximately 21% and on March 22nd, it peaked around 22% during the 1997 thaw. The temperature in the base at maximum moisture content was -1.7° C.

This increase in moisture content happened at a rate of approximately $9\%/1^{\circ}$ C. This rapid increase occurred when the temperature in the base was between -4 and -2° C. It is possible that the increase in moisture content was attributable to infiltration of melting snow into the base course from the surface or from melting ice lenses in the base course. Recovery of the base started on

March 23rd and continued to about April 13th, where the moisture content leveled to approximately 7%. The 10 to 13% fines in the base could explain this recovery time. Janoo et al. (Janoo et al, 1997) found that, when base course layers under airport pavements contained more than 3% fines, it affected the rate of moisture dissipation during the thaw period. Based on the assumption that the moisture content in the layer controls the strength of that layer, the critical period for the base lasted approximately 3 days (March 20th–March 22nd) and it required another 20 days to recover to near its original moisture content.

The base freezing index was 553°C degree-days (995°F degree-days) (Figure 6). According to Figure 6, freezing of the base started around November 16th 1996, and thawing started on March 30th 1997. This is 8 days after the base had reached its critical moisture content of 22%.

In 1998, based on the moisture data, thawing began on the 17^{th} of February, when the moisture content first rose above 6.7%, and it peaked at about 29% on the 22^{nd} of February 1998. There was a second peak at about 20% on March 2^{nd} , and a third peak at about 16% on the March 12^{th} . At the start of thaw in 1998, the temperature in the base was -2.0° C. The temperature in the base at maximum moisture content was also -2.0° C.

Figure 6. Base freezing index for winter/spring 1996–1997 at Dickey Lake.

On March 30th 1997, the base moisture content was approximately 9%, which was close to its recovered moisture content. It may be coincidental that the time of critical moisture content was the same time as the air freezing index indicated thawing.

The top parts of the subgrade at Dickey Lake were characterized as A-2-4 and A-4 soils using the AASHTO soil classification system (AASHTO, 2002). The first set of measurements in the subgrade that is shown in Figure A-1 was taken at a depth of 30 mm (1.2 in.) below the bottom of the base in the A-2-4 soil. The results from these measurements can be used to infer the response at the top of the subgrade. The response at the top of the subgrade is very important in pavement engineering, as vertical elastic strain on top of the subgrade is currently used in one of the definitions of failure.

The subgrade moisture response (Figure A-1) is similar to that of the base. The mean non-frost moisture content is about 6.2% (COV = 10%) at the start of the 1996–1997 winter, and 6.2% (COV = 9.0%) at the start of the 1997–1998 winter. As with the base, the moisture content dropped rapidly as the subgrade froze. The minimum temperature reached was -11° C during the 1996–1997 winter. During the 1997–1998 winter, a data gap caused the loss of the minimum temperature. When the subgrade was frozen, the moisture content was approximately 0%. Thaw began when there was a rapid increase in moisture content. This rapid increase started around March 24th and became critical on March 25th during the 1996–1997 winter. The temperature in the subgrade on March 24th was -2.3° C. The moisture content peaked at about 35% on March 27th and remained at the peak value for 4 days. Recovery started around April 1st and ended around April 17th. The average moisture content at the end of recovery is approximately 7%. Based on the moisture data, the thaw-weakening period began around March 25th and ended around April 17th—23 days. Again, the significant period of thaw weakening could be attributed to the high fines content in the layer (27% finer than 0.075 mm).

In the 1997–1998 winter, the rapid moisture content increase started about March 13th and became critical on March 14th. The temperature in the subgrade on March 13th was –2.2°C. The moisture content peaked at about at 19% on March 14th. Recovery started around March 14th and ended around April 13th. The average moisture content at the end of recovery is approximately 7%. Based on the moisture data, the thaw-weakening period began around March 13th and ended around April 12th, a period of 30 days. Again the significant period of thaw weakening could be attributed to the high fines content in the layer (27% finer than 0.075 mm). The ground freezing index at the top of the subgrade is shown in Figure 7. The ground freezing index for the top of the subgrade was 506°C degree-days (911°F degree-days). According to the freezing index, freezing started on November 17th and ended on April 17th for the 1996–1997 winter. This means that if we had based the beginning of thaw on temperature, we would have missed the thaw period by 23 days and the subgrade by this time had recovered to its non-frost moisture content.

Figure 7. Ground freezing index for top of subgrade for winter/spring 1996–1997 at Dickey Lake.

At location 813 (Figure A-1), 259 mm (10 in.) from the bottom of the base, the non-frost moisture content is approximately 21% (COV = 3%) for the 1996–1997 winter/spring season, and the non-frost moisture content is approximately 20% (COV = 1%) for the 1997–1998 winter/spring season. The minimum temperature at this depth was -6° C in 1996–1997. During the 1997–1998 winter, a data gap caused the loss of the minimum temperature. The mean unfrozen moisture content was approximately 14.5%. During the spring of 1997, thaw occurred (with respect to moisture) when there was a rapid increase in moisture content around April 3rd. The temperature at this depth at this time of rapid moisture increase was -0.6° C. The critical moisture content was 34% and it occurred around April 4th. Recovery began the day after and ended around April 19th. The recovered moisture

content was 21%. The ground freezing index at this depth was 188°C degree-days (338°F degreedays). Freezing at this depth started on December 18th and ended on April 16th. Again, as before in the top of the subgrade, if temperatures had been used to determine the thaw period, it would have been missed.

During the spring of 1998, thaw occurred (with respect to moisture) when there was a rapid increase in moisture content around March 15th. The temperature at 259 mm (10 in.) from the bottom of the base at this time of rapid moisture increase was –0.3°C, and did not rise above 0°C until March 16th. The critical moisture content was about 26% and it occurred around March 27th. Recovery began the day after and ended around April 16th. The recovered moisture content was about 20%. At this depth, the start of the freezing period was within the data gap mentioned above.

At the depth of 1168 mm from the surface and below, it is difficult to say if the layer has any significant moisture change during the1997 thaw period (Figure A-1). The soil was classified as an A-1-b soil and has a significant amount of fines (18–24%). The mean non-frost moisture content was around 8%. At this depth, the minimum temperature reached was -4.5 °C. The mean unfrozen moisture content during the winter was close to 0.5%. However, as before, the moisture content began to increase when the subgrade temperature was around -2° C. At the end of thaw, the moisture content rapidly increased to its non-frost value of 8%.

In the fall of 1997, the mean non-frost moisture content was around 6%. However, the moisture content began to increase rapidly when the subgrade temperature was around -1° C on March 15^{th} 1998. The critical moisture content peaked at 17% on March 28^{th} . Recovery began the day after and ended around April 21^{st} . At the end of recovery period, the moisture content had returned to its non-frost value of 6%.

At 1468 mm, during the winter/spring season of 1996–1997, the soil started to freeze around January 19th and started to thaw around March 3rd (Figure A-1). The temperature hovered around the 0°C mark until April 13th. The average non-frost moisture content during the non-frost period is around 15%. The moisture content increased at a rapid rate around March 27th, when the ground temperature was again around -2° C. Again, it is difficult to conclude whether or not there was a period of increased moisture content. It is possible that there may have been an increase of approximately 1.5 to 2× the non-frost moisture content during the spring thaw.

During the 1997–1998 winter/spring seasons, although there is the above-mentioned data gap, the temperatures appear not to have gone below 0°C at this depth (1468 mm). The temperature hov-

ered around the 1°C mark until March 18th. The average non-frost moisture content during the nonfrost period is around 12%. The moisture content increased at a rapid rate around March 15th, when the ground temperature was around 1°C. The critical moisture content peaked at around 20% on March 27th. Recovery began the day after and ended around April 21st. There was an increase of approximately $1.5 \times$ the non-frost moisture content during the spring thaw at this depth.

In summary, at Dickey Lake, the base course and the upper subgrade layer show significant increase in moisture content during the spring thaw. This suggests that the pavement structure is prone to thaw weakening. Table 5 summarizes the periods of thaw weakening and recovery. The critical periods in Table 5 are based on the time when a rapid increase in moisture content surpasses its nonfrost value. At Dickey Lake, the thaw weakening is controlled by the base course. It lasted approximately 25 days in 1997 and 30 days in 1998.

Table 5. Summary of freezing, thaw-weakening periods, and moisture contents at Dickey Lake.

Layer	Depth (mm)	AASHTO	% finer than 0.075 mm	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening period
Base	292	A-1-a	8-10	18-Nov	26-Mar	20-Mar	22-Mar	13-Apr	20-Mar to April 13
Subgrade	584	A-2-4	28	19-Nov	13-Apr	25-Mar	31-Mar	15-Apr	25-Mar to April 15
	813	A-4	37	20-Dec	13-Apr	3-Apr	5-Apr	16-Apr	3-Apr to April 16
	1168	A-1-b	24	21-Dec	17-Apr	*	—	—	—
	1468	A-1-b	18	19-Jan	3-Mar		—	—	—

a. 1996–1997 winter.

* Dashes indicate that there was no weakening at these depths, therefore, no critical period.

				Length of		Average volumetric moisture content				
Laver	Depth			(days)		(%)				
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non-frost	Freezing	Critical period	Recovered	
Base	292	128	2	22	24	5.5	0	22	7	
	584	145	6	15	21	6	0	35	7	
Subarada	813	114	2	11	13	20	4	34	22	
Subgrade	1168	117	*	—	—	8	0	_	8	
	1468	43			—	15	0		15	

* Dashes indicate that there was no weakening at these depths, therefore, no critical period.

Layer	Depth (mm)	AASHTO	%finer than 0.075 mm	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening period
Base	292	A-1-a	8 - 10	12-Nov	18-Mar	7-Feb	22-Feb	15-Mar	7-Feb to 15-Mar
Subgrade	584	A-2-4	28	16-Nov	19-Mar	15-Feb	16-Mar	12-Apr	15-Feb to 19-Mar
	813	A-4	37	ND*	16-Mar	15-Mar	27-Mar	15-Apr	15-Mar to 15-Apr
	1168	A-1-b	24	ND	21-Mar	14-Mar	28-Mar	16-Apr	14-Mar to 16-Apr
	1468	A-1-b	18	ND	†	14-Mar	28-Mar	18-Apr	—

b. 1997-1998 winter.

*ND—Missing temperature data.

† Dashes indicate that there was no weakening at these depths, therefore, no critical period.

Layer	Depth		Length o (dag	Average volumetric moisture content (%)					
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non- frost	Freezing	Critical period	Recovered
Base	292	126	15	21	36	7.5	ND	29	7.5
	584	123	29	27	56	7	ND	19	7
Subgrade	813	ND*	12	19	31	20	ND	26	20
-	1168	ND	14	19	33	7	1	17	6.5
	1468	ND	14	21	35	12.5	7	19.5	12.5

*ND—Missing temperature data.

Wolf Point

The gradations of the base and subgrade at Wolf Point are shown in Figures 8 and 9. Additional details of the gradation and Atterberg limits can be found in Appendix C. Based on results from sieve analyses, the base was classified as an A-1-b soil. The subgrade varied between an A-6 and an A-7-6 soil (Table C-2). The percentage finer then the 0.075-mm (#200) sieve size in the base ranged between 12 and 15% and in the subgrade, between 50 and 56%. The plasticity index of the subgrade ranged between 19 and 27%. Initial moisture contents taken at the time of instrumentation installation (mid-September, 1996) ranged between 18 and 21% in the subgrade. These readings in the subgrade appear to correlate with the volumetric moisture contents.

Figure 8. Base course grain size distribution at Wolf Point.

Figure 9. Subgrade grain size distribution at Wolf Point.

The air freezing index at Wolf Point was 1595°C degree-days (2873°F degree-days) during the 1996–1997 winter. Freezing started around the end of October and ended around mid-March. Based on the temperature data, frost penetrated to at least 1.8 m (71 in.). The moisture content and tem-

perature data in the base and subgrade are shown in Figures A-2, A-3, A-11, and A-12. Volumetric moisture and temperature data in the pavement structure were missing during part of the winter.

1996–1997 Data Analysis

The non-frost volumetric (month of October) moisture content of 46% (Figures A-2 and A-3) appears to be high. Assuming a specific gravity of 2.65, we can translate this moisture content to a gravimetric moisture content of approximately 17%. Measurements from a nuclear density moisture meter during the installation of the gages in mid-September indicated a gravimetric moisture content around 8%. Either water entered the pavement from the surface or measurements of moisture content in the base course are suspect. However, assuming the trend in moisture content as a function of time is correct, it suggests that there may be a thaw-weakening period.

The minimum temperature reached in the base was –24°C. At around this temperature, the unfrozen moisture content was approximately 10%. The critical moisture content was around 57%, and the critical period was between April 21 and May 3. This thaw-weakening period started later in the spring (approximately 9 days after the end of freezing). The weakening may be attributable to an influx of melting snow into the base course.

The subgrade at Wolf Point was classified as an A-6 to an A-7-6 soil. These soils in general tend to be frost-susceptible. However, based on the moisture contents (Figures A-2 and A-3), the subgrade appears to recover rapidly to its non-frost value during thaw at all depths, with the exception of 914 mm. At this depth, the data suggest some thaw weakening lasting for approximately 4 days. The critical period is for approximately 2 days. Recovery to its non-frost moisture content occurs within the next 2 days. The moisture content during the critical period increased by about 16%, compared to its non-frost value.

A summary of the results for Wolf Point is given in Table 6. The base layer may be prone to thaw weakening. If so, the period of thaw weakening is approximately 2 weeks, staring in mid-April. However, this increase in moisture content is possibly attributable to an influx of melting snow from the surface. The subgrade appears to recover to its non-frost moisture content at the end of thaw. Although freezing temperatures and frost-susceptible soils were found at Wolf Point, there was practically no thaw weakening of the subgrade. This leads to the conclusion that there was no nearby source of water for the freezing front (a deep or nonexistent water table). Table 6. Summary of freezing and thaw-weakening periods, and moisture contents at Wolf Point.

Layer	Depth (mm)	AASHTO	% finer 0.075 mm	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening Period
Base	229	A-1-b	12-15	8-Nov	12-Apr	21-Apr	3-May	9-May	21-Apr to 3-May
	381	A-6	65	13-Nov	26-Mar	†	—	—	—
	762	A-6	65	23-Nov	18-Apr	_	—	—	—
Subgrade	914	A-7-6	56	29-Nov	22-Apr	21-Apr	23-Apr	25-Apr	21-Apr to 25-Apr
	1118	A-7-6	57	30-Nov	8-May	_	—	—	—
E	1422	A-7-6	60	ND*	13-May	—	—		—
	1803	A-7-6	62	22-Jan	19-May	_	—	—	—

a. 1996-1997 winter.

*ND – Missing temperature data.

† Dashes mean that data do not show event to have occurred.

Laver	Depth		Le (ngth of days)		Average volumetric moisture content (%)				
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non-frost	Freezing	Critical period	Recovered	
Base	229	155	12	6	18	46	8	57	37	
	381	133	†	_	—	39	19	_	39	
	762	146	_		—	40	22	_	40	
Subarada	914	144	2	2	4	37	19	41	37	
Subgraue	1118	159	_	_	—	40	21	_	36	
_	1422	ND*	_		—	42	34	_	41	
	1803	117	_	_		39	36	_	39	

*ND – Missing temperature data. † Dashes mean that data do not show event to have occurred.

b. 1997-1998 winter.

Layer	Depth (mm)	AASHTO	%finer than 0.075 mm	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening period
Base	229	A-1-b	12 - 15	10-Nov	22-Mar	14-Feb	18-Feb	22-Mar	14- Feb to 22-Mar
	381	A-6	65	14-Nov	25-Mar	21-Feb	24-Feb	27-Mar	21-Feb to 27-Mar
	762	A-6	65	11-Dec	2-Apr	*	—		—
Subgrade	914	A-7-6	56	7-Jan	9-Apr	—	—	—	—
	1118	A-7-6	57	27-Dec	16-Apr	_	_	—	—
_	1422	A-7-6	60	17-Jan	15-Apr		_	—	—
	1803	A-7-6	62	_	_	_	_	_	_

* Dashes mean that data do not show event to have occurred.

Laver	Depth		Length o (day		Average volumetric moisture content (%)				
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non frost	Freezing	Critical period	Recovered
Base	229	132	4	32	36	33	18.5	43	32
	381	131	3	31	34	38	30	38	38.5
	762	112	0	0	0	37.5	30	_*	38
	914	92	0	0	0	35	25.5		34
Subgrade	1118	110	0	0	0	34	28		34
-	1422	88	0	0	0	—	—	_	—
	1803	0	0	0	0		—	_	—

* Dashes mean that data do not show event to have occurred.

1997–1998 Data Analysis

The non-frost volumetric (month of October) base moisture content was 35%. The minimum temperature reached in the base was –20°C. The critical moisture content was around 43%, and the critical period was between 14 and 18 February. Based on the moisture contents (Figures A-2 and A-3), the subgrade appears to recover rapidly to its non-frost value during thaw at all depths.

A summary of the results for Wolf Point is given in Table 6. There appears to have been no thaw weakening in the spring of 1998. As mentioned earlier, although freezing temperatures and frost-susceptible soils were found at Wolf Point, there was practically no thaw weakening of the subgrade. This again supports the conclusion that there was no nearby source of water for the freezing front (i.e., the water table is either deep or nonexistent).

Sweetgrass

The response of the moisture during the thaw period is similar to that of Wolf Point. With the possible exception of the base, there is no indication of thaw weakening based on the response of the moisture content in the base and subgrade.

The base was mostly classified as an A-1-a soil (Figure 10). The subgrade was classified between an A-4 and an A-6 soil (Figure 11). The percent finer than 0.075 mm (#200) sieve ranged between 7.5 and 13% in the base and between 47 and 68% in the subgrade. Details of the gradation can in found in Table C-3.

Figure 10. Base course grain size distribution at Sweetgrass.

Figure 11. Subgrade grain size distribution at Sweetgrass.

1996–1997 Data Analysis

Percent Finer

Detailed moisture and temperature data for the winter and spring 1996–1997 period can be found in Figures A-4, A-5, A-13, and A-14. The air freezing index at this site was 841°C degree-days (1346°F degree-days). The base (Figure A-13) started to freeze around mid-November and was

thawed by late March. The measured minimum temperature in the base was -16° C. The non-frost moisture content was around 4%. When frozen, the moisture content dropped to zero and at the end of thaw recovered to 4%.

The subgrade started to freeze around the same time and it was completely thawed by the middle to third week of April. There was no increase in moisture content during the spring thaw. At the end of winter, the moisture content rapidly increased to its non-frost value, as shown in Figure A-4. We can conclude that the pavement structures at Sweetgrass do not undergo any thaw weakening. The results are summarized in Table 7. Again, as seen at Dickey Lake, the rapid increase in moisture content during spring thaw occurs around -2.5° C. This rapid increase in moisture content occurred about 2 weeks prior to when the ground temperature was above 0°C.

1997–1998 Data Analysis

Detail temperature and moisture data for the winter spring 1997–1998 period can also be found in Figures A-4, A-5, A-13, and A-14. Because of a gap in the data (mid-November to mid-February), it is not possible to tell when the base or subbase started to freeze. However, the base was thawed by mid-March. The measured minimum temperature in the base was -3.5°C; however, the data gap is large enough that lower temperatures may have occurred. The non-frost moisture content was around 4%. At the end of thaw, the moisture content recovered to 4%.

The subgrade was completely thawed by the second or third week of April. The moisture content plot shows that there was no increase in it above the non-frost value during the spring thaw. At the end of winter, the moisture content rapidly increased to its non-frost value, as shown in Figures A-4 and A-5. We can conclude that the pavement structures at Sweetgrass did not undergo any thaw weakening this season. The results are summarized in Table 7. Like Dickey Lake, the rapid increase in moisture content during spring thaw occurs around -2.5° C. (Where the data gap doesn't hide the response of the subgrade. Below 1087 mm, the data gap hides the response of the subgrade to freezing and thawing.) This season, the rapid increase in moisture content occurred about 4 weeks prior to when the ground temperature was above 0°C.

Table 7. Summary of freezing, thaw-weakening periods and moisture contents at Sweetgrass.

Layer (mm)	Depth	AASHTO	% finer than 200	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw weakening period
Base	572	A-1-a & A- 1-b	8-13	15-Nov	25-Mar	*	—	_	—
	864	A-6	68	19-Nov	15-Apr	_	—	_	—
	1087	A-6	47-68	24-Nov	17-Apr	_	—	_	—
	1237	A-6 & A-4	47-68	28-Nov	17-Apr	_	—	_	—
Subgrade	1387	A-6 & A-4	47-68	11-Dec	19-Apr		—		—
-	1586	A-6 & A-4	68	13-Jan	26-Mar	_	—	_	—
	1887	A-6	_	4-Jan	22-Apr	_	—	_	—
	2289	—	_	26-Jan	21-Apr	_	_	_	—

a. 1996-1997 winter.

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Layer	Depth		Le (ngth of days)		Average volumetric moisture content (%)				
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non-frost	Freezing	Critical period	Recovered	
Base	572	130	*	—	_	3	0		4	
-	864	147		—		28	8	_	30	
	1087	144		—		34	16		35	
	1237	140	—	—		37	21	—	37	
Subgrade	1387	129	—	—		31	25	—	34	
	1586	72	—	—		37	30	—	38	
	1887	108	—	—		31	27	—	32	
	2289	85	_		_	35	_	_	35	

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

b. 1997-1998 winter.

Layer	Depth (mm)	AASHTO	%finer than 0.075 mm	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening period
Base	572	A-1-a & A-1-b	8-13	13-Nov	20-Mar	*	—	—	_
	864	A-6	68	—	24-Mar	—	—	—	—
	1087	A-6	47-68	—	25-Mar	—	—	—	—
	1237	A-6 & A-4	47-68	—	25-Mar	—	—	—	—
Subgrade	1387	A-6 & A-4	47-68	_	25-Mar	_	_	_	_
	1586	A-6 & A-4	68	—	—	—	—	—	—
-	1887	A-6	—	—	—	—	—	—	—
	2289	_	—		_	_	_		_

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Layer	Depth		Length o (day	Average volumetric moisture content (%)					
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non- frost	Freezing	Critical period	Recovered
Base	572	127	*	—	—	3.5	—	_	3.5
	864	—	_	—	—	29	—	_	30
	1087	—	_	—	—	34.5	—	_	34
	1237	_	_	_	—	36	_		36
Subgrade	1387	—	—	_	—	40.5	—	_	40
	1586	—		—	—	38	—	_	37
	1887	—	_	—	—	33.5	—	_	31.5
	2289	85	—	_	—	35	—	—	35

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Scobey/Redstone

The base was classified as an A-1-b. The subgrade was classified as an A-6 (Figures 12 and 13). Additional details of the gradation and Atterberg limits can be found in Table C-4. The percentage finer than the 0.075 mm (#200) sieve was about 15% in the base and approximately 65% in the sub-grade.

Figure 12. Base course grain size distribution at Scobey/Redstone.

Figure 13. Subgrade grain size distribution at Scobey/Redstone.

The response at Scobey/Redstone is similar to that of Sweetgrass. The base is prone to thaw weakening and the subgrade in general is not. The moisture and daily mean temperature measurements are presented in Figures A-6, A-7, A-15, and A-16. Subsurface moisture and temperature data were missing during both winter periods (1996–1997 and 1997–1998). The air freezing index for this site was 1346°C degree-days (2442°F degree-days).

1996–1997 Data Analysis

The non-frost moisture content in the base course was 21% (Figure A-6). During the winter, the mean air temperature reached a minimum of -32° C. The minimum average daily temperature during the winter in the base layer was at least -17° C. At this temperature, the unfrozen moisture content was around 5%. There was a rapid increase in the moisture content on March 20th, when the base temperature was -1.5° C. The critical moisture content of 25% was reached 2 days later. Recovery of the base course started on March 22nd and was completed by March 29th. The base had a thaw-weakening period of approximately 9 days.

The subgrade at all depths, with the exception of 965 mm, recovered to its non-frost moisture content at the end of freezing (Figures A-6 and A-7). At 965 mm, there was some thaw weakening of the layer. The critical period was for about a day. Full recovery took place by 5 days. The thaw-

weakening period lasted about 6 days. A summary of the freezing, thawing and moisture content at various depths are presented in Table 8.

Table 8. Summary of freezing, thaw-weakening periods and moisture contents at Scobey/Redstone.

Layer (mm)	Depth	AASHTO	% finer than 200	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weakening period
Base	305	A-1-b	15	12-Nov	22-Mar	20-Mar	22-Mar	24-Mar	20-Mar to
									24-Iviar
	445	A-6	65	12-Nov	26-Mar	—	—	—	—
	673	A-6	65	20-Nov	15-Apr	—	—	—	—
	813	A-6	65	*	18-Apr	—	—	—	—
Subgrade	965	A-6	65	_	21-Apr	19-Apr	20-Apr	25-Apr	19-Apr to 25- Apr
	1168	A-6	65	10-Dec	28-Apr	—	—	—	
	1473	A-6	65	26-Dec	5-May	—	—	—	—
	1867	A-6	65	—	14-May	—	—	—	—

a. 1996–1997 winter.

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

	Denth		Le (ngth of davs)		Average volumetric moisture content (%)				
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non-frost	Freezing	, Critical period	Recovered	
Base	305	130	2	2	4	21	6	25	21	
	445	134	*			33	10	_	34	
	673	146			—	33	14		33	
	813	—				33	17	_	33	
Subgrade	965	—	1	5	6	32	20	39	32	
-	1168	139				33	18	_	32	
	1473	100	_			29	18	_	28	
	1867	—		—	—	27	23	_	27	

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.
| Layer | Depth
(mm) | AASHTO | %finer than
0.075 mm | Start of
freezing | End of freezing | Start of
critical
period | Start of recovery | End of recovery | Thaw-
weakening
period |
|----------|---------------|--------|-------------------------|----------------------|-----------------|--------------------------------|-------------------|-----------------|------------------------------|
| Base | 305 | A-1-b | 15 | 14-Nov | * | — | — | — | — |
| | 445 | A-6 | 65 | 15-Nov | 26-Mar | — | — | — | — |
| | 673 | A-6 | 65 | 13-Dec | 1-Apr | — | — | — | — |
| | 813 | A-6 | 65 | — | 3-Apr | — | — | — | — |
| Subgrade | 965 | A-6 | 65 | 7-Jan | 6-Apr | — | — | — | — |
| | 1168 | A-6 | 65 | 12-Jan | 10-Apr | — | — | — | — |
| | 1473 | A-6 | 65 | 19-Jan | 10-Apr | _ | — | — | — |
| | 1867 | A-6 | 65 | — | _ | — | — | — | — |

b. 1997-1998 winter.

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Lavor	Depth		Length o (day	f Period ys)		Average volumetric moisture content (%)					
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non- frost	Freezing	Critical period	Recovered		
Base	305	—	*	—	—	18	12	_	20		
	445	131	_	—	—	33	4	_	33		
	673	109	_	_	—	31	9.5	_	31		
	813	_	_	_	—	31	8.5	_	30		
Subgrade	965	89	_	—	—	31	25.5	_	31		
	1168	88	_	_	—	34	27.5	_	32		
	1473	81	—	_	—	27	30	_	27.5		
	1867	_	—	—	—	_	—		—		

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

1997–1998 Data Analysis

The non-frost moisture content in the base course was 20% (Figure A-6). During the winter, the mean air temperature reached a minimum of -32° C. There was a rapid increase in the moisture content on February 20th, when the base temperature was -0.6° C. A data gap hides whether there was a critical moisture content or not.

The subgrade at all depths recovered to its non-frost moisture content at the end of freezing (Figures A-6 and A-7). A data gap prevents any conclusions about whether there was or was not a thaw-weakening period for this spring season.

A summary of freezing, thawing, and moisture content at various depths is presented in Table 8. There was some thaw weakening of the base and subgrade at Scobey/Resdstone, under some conditions of temperatures, but others did not produce thaw weakening. The thaw-weakening period, when it occurs, is for about a week. At this site, we found that the rapid increase in moisture content started when the ground warmed up to around -1.5 to -1° C.

East Glacier

Figure 14 indicates that the base course is an A-4 soil. The amount of fine material is about 84%. The subgrade (Figure 15) classifies as an A-6 material, with the percentage of fines in the area of 65%. Additional detail on the gradation and Atterberg limits can be found in Table C-5.

The mean daily moisture contents and temperatures as a function of depth are presented in Figures A-7, A-8, A-16, and A-17. The critical period for 1996–1997, based on moisture content, started on April 2^{nd} and remained critical until April 22^{nd} . Recovery started on April 23^{rd} and was fully completed after April 26^{th} . The thaw-weakening period for the base layer was approximately 3 weeks. The moisture content during the critical period was 10% more than its non-frost value of 28%. The rapid increase in moisture content occurs when the base temperature was around -1.0° C. No air temperature was available for this site for determining the air freezing index.

There are no data for the fall, winter, and spring of 1997–1998.

Figure 14. Base course grain size distribution at East Glacier.

Figure 15. Subgrade grain size distribution at East Glacier.

Based on the moisture measurements, the critical period for the top part of the subgrade ($z \le 1260 \text{ mm}$) started between April 16th and 18th. However, the moisture content did not recover to its non-frost value at the end of May. The non-frost moisture content varied between 34 and 37%. The critical moisture content varied between 41 and 47%. The unfrozen moisture content during the winter varied between 14 and 22%. Starting at 1461 mm and below, there was no increase in moisture content during thaw and this area recovered rapidly to its non-frost value. Table 9 gives these results.

In summary, moisture and temperature data from five sites were used to evaluate the potential for thaw weakening. These sites were limited to the northern half of Montana, as data were unavailable from the southern sites either owing to malfunction of instrumentation or because they were not collected during the period of analysis.

Layer (mm)	Depth	AASHTO	% finer 200	Start of freezing	End of freezing	Start of critical period	Start of recovery	End of recovery	Thaw- weaken- ing period
Base	457	A-4	84	20-Nov	23-Apr	2-Apr	23-Apr	26-Apr	2-Apr to 26-Apr
	737	A-6	85	21-Nov	26-Apr	16-Apr	> 30-May	*	_
	1110	A-6	85	26-Nov	29-Apr	17-Apr	> 30-May		_
Subarada	1260	A-6	85	27-Nov	3-May	18-Apr	> 30-May		—
Subgraue	1461	A-6	85	7-Dec	5-May	_	—	_	—
	1760	A-6	85	22-Dec	7-May	_	—	_	—
	2161	A-6	85					_	

Table 9. Summary of freezing, thaw-weakening periods and moisture contents at East Glacier, 1996–1997 winter.

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Lavor	Depth		Lengt (h of period (days)		Average volumetric moisture content (%)					
Layer	(mm)	Freezing	Critical	Recovery	Thaw weakening	Non-frost	Freezing	Critical period	Recovered		
Base	457	154	21	3	24	28	11	38	29		
	737	156	*	—	> 44	37	22	41	—		
	1110	154	_	—	>43	34	14	47	—		
Subarada	1260	157	—	—	>42	35	20	42	—		
Subgrade	1461	149	_	—	—	38	25	—	38		
	1760	136	_	—	—	39	26	—	39		
	2161	None	_			40			40		

* Dashes indicates that there was no weakening at these depths, therefore, no critical period.

Out of the five sites, the base courses mostly graded between an A-1-a and A-1-b. Although classified as granular material, the percentage of fines in the base varied between 8 and 15%. The exception to this was at East Glacier, where it graded out as an A-4. The subgrades at these sites were variable, ranging among A-1-b, A-2-4, A-4, and A-6. Water table locations were not available from these sites and we surmised that the water table was either deep or nonexistent at Wolf Point, Sweetgrass, and Scobey/Redstone.

Based on the moisture content, the base course layers at Dickey Lake, Wolf Point, Scobey/Redstone, and East Glacier are prone to thaw weakening. The length of thaw weakening varied from 4 days (Scobey/Redstone) to 3 weeks (East Glacier). The top of the subgrade at Dickey Lake and East Glacier are also prone to thaw weakening.

BACK-CALCULATION OF LAYER MODULI

The current pavement design procedure in the AASHTO Guide for the Design of Pavement Structures (AASHTO, 1993) requires the effective resilient modulus of the subgrade. This effective resilient modulus is a weighted mean of the monthly resilient moduli and is a function of the expected damage to the pavement structure. This effective resilient modulus is a single value that produces the same amount of damage to the pavement structure when compared with the damage obtained from the use of seasonal subgrade moduli.

The elastic moduli of the asphalt concrete pavement surface, base, and subgrade were computed using the back-calculation routine WESDEF. This program was developed by the U.S. Army Waterways Experiment Station (WES). Briefly, WESDEF is a five-layer system that uses all the measured surface deflections, initial layer moduli, and an iterative procedure to determine the moduli of the surface, base, and subgrade layers. The bottom layer is automatically set as a rigid layer of infinite depth. In early work, WES found that they were able to obtain closer agreement between measured and calculated deflections when an artificial rigid layer was placed at 6 m. The location of this rigid layer can be manually overridden, and any depth to bedrock can be used. Our experience has been that the best results are obtained when the number of unknown moduli layers is limited to three. A solution is obtained when the program matches the calculated to the measured deflection. The error between the calculated and measured deflections is indicated by an absolute arithmetic (AA) sum of the difference between the two. A zero error will indicate a perfect match. An acceptable AA sum error for this study was defined to be less than 20%.

Prior to the back-calculation process, a simple error check was conducted on the deflection data. The data were checked to see if the six deflections starting under the center plate to the last sensor located at 1.2 m (4 ft) followed a smooth, decreasing trend as the sensor spacing increased. This is based on the theory that the further sensors are more influenced by the deeper layers and the combined deflections decrease with distance from the point of loading. Points that did not follow the decreasing trend, as determined by visual observation, were not used in the analysis.

As mentioned earlier, deflection tests and measurements in 1996–1997 were obtained from the Road Rater. Surface deflections were generated by applying steady-state dynamic loads ranging from 9 to 22 kN. Deflections were measured at distances of 0, 203, 305, 610, 914 and 1219 mm from the center of the plate. In several cases, deflections were reported at four or five of the sensor spacings. Each load was applied one time at each of the 21 locations in the majority of tests, except when some re-tests were done. For the Road Rater testing in 1996–1997, only the deflections obtained from the 18-kN load were used in the back-calculation, as it was the only load common to all tests.

The 1997–1998 deflection tests and measurements were obtained using the JILS FWD. The deflections were generated by applying falling weight loads ranging from 27 to 62 kN (6000 to 16,000 lb). The deflections were measured at 0, 203, 305, 457, 610, 914, and 1219 mm (0, 8, 12, 18, 24, 36, and 48 in.) from the center of the plate. In several cases, deflections were reported for only four or five of the sensors. Each load was applied one time at each of the 21 locations in the majority of tests, except when some re-tests were done.

There are many ways to use a back-calculation tool. The process is sensitive to layer thicknesses and in some programs it can be sensitive to the initial layer moduli used to start the process. Our experience with WESDEF is that it is not sensitive to the initial seed moduli. For thin asphalt layers, less than 75 mm, the back-calculated surface modulus can be in error. The usual practice is either determining the modulus using other techniques, such as the spectral analysis of surface waves (SASW), or estimating the modulus from laboratory tests. Either of these values can then be used as a constant in the back-calculation process.

In this study all the layer moduli were back-calculated. The pavement structure was idealized as a three-layer system. A rigid layer was placed at a depth of 6 m, with the exception of Dickey Lake where bedrock existed at 1.5 m. The moduli and Poisson's ratio used in the process are given in Table 10.

Material Type	Estimated initial modulus (MPa)	Minimum modulus (MPa)	Maximum modulus (MPa)	Poisson's ratio
Asphalt concrete	5516	1379	27579	0.35
Base or subbase	414	14	1379	0.35
Subgrade	140	14	1379	0.40

Table 10. Initial and range of layer moduli used in WESDEF.

Other attempts were made to see if we could further reduce the error. For example, we tried assigning a surface elastic modulus and having WESDEF back-calculate only the base and subgrade moduli. The asphalt concrete modulus was estimated from the Asphalt Institute model (Asphalt Institute, 1982). This did not reduce the error; instead, it increased the error. Another attempt was to divide the subgrade into more than one layer based on changes in moisture content or between frozen and unfrozen layers. This attempt also did not reduce the AA error. The results presented in the following tables are from the first attempt at back-calculating all layers. Based on our experience, we found that the subgrade modulus is not significantly affected by any of the methods and thus can tolerate significantly higher error. The impact is usually on the base and the asphalt concrete layers.

The back-calculated base course and asphalt concrete moduli are presented in Tables 11 through 20. With respect to the base course, it is difficult to conclude the thaw weakening potential of the base course from the FWD deflections. Back-calculated base course moduli should be used with caution, as the error in the predicted modulus increases as one gets closer to the surface. The current results are limited and show some scatter, therefore a trend is difficult to formulate. However, the moisture measurements in the base course presented earlier suggests the possibility of thaw weakening. The authors suggest that an in-depth laboratory study on the resilient behavior of base courses be conducted and the results from the field FWD tests be correlated to the lab results before any relations are presumed from the back-calculated base course moduli presented in this report.

The results for the subgrade, base, and asphalt concrete layers from Dickey Lake, East Glacier, Bull Mountain, Livingston, Swan Lake, Alzada, Wolf Point, Scobey/Redstone, Loma, and Sweetgrass are presented in Tables 11 through 20 and in Figures B-1 through B-20.

It is apparent from reviewing the results that, in many cases, testing during the critical period was missed. This is illustrated in Figures 16 and 17 for the subgrade at Dickey Lake and in the base at East Glacier, respectively. However, based on the existing results, it is possible to surmise that at Alzada, Livingston, Loma, and Sweetgrass there is no thaw weakening of the base and subgrade. Thaw weakening may be a problem at Bull Mountain, Wolf Point (base), Swan Lake, and Scobey/Redstone (base). It is difficult to conclude whether thaw weakening is a critical problem based on the deflection data at Dickey Lake and East Glacier. Moisture data indicate that these two areas may be prone to thaw weakening.

36

In Tables 11 through 15, the headings include the temperature measured by the Vitel probes in the base course and the top of the subgrade. In Tables 16 through 20 there is only the back-calculated moduli, since the temperature and moisture measurement systems failed early in the test program.

Figure 16. Back-calculated subgrade modulus and moisture content as a function of time at Dickey Lake.

Figure 17. Back-calculated base modulus and moisture content as a function of time at East Glacier.

Thicknoss (mm)	1	27.0			426.7 919.5								
Thickness (IIIII)		AC			Base					Subgrade			
Date	Back-calcu	lated modulus	Tempo	erature	Moisture content	Back-c mo	alculated dulus	Tempe	rature	Moisture content	Back-c mo	alculated dulus	
	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(%)
16-May-96	11659.5	1,691,006	†	—	_	193.7	28,099	—	—	—	61.9	8,984	8.7
29-May-96	1692.8	245,518	—	—	—	287.8	41,744	—	—	—	53.4	7,740	14.7
18-Jun-96	9094.9	1,319,061	—	—	—	339.4	49,228	—	—	—	92.7	13,445	9.7
24-Jul-96	6398.1	927,933	—	—	—	459.4	66,624	—	—	—	133.6	19,380	25.9
17-Sep-96	8122.7	1,178,052	—	—	—	410.6	59,555	—	—	—	122.5	17,763	23
16-Oct-96	5779.5	838,222	7.9	46.2	5.3	528.3	76,615	9.1	48.4	6.5	79.1	11,468	33
5-Apr-97	10607.2	1,538,392	7.9	46.2	2.4	832.0	120,671	7.0	44.6	1.3	78.6	11,398	5.8
26-Apr-97	7915.1	1,147,942	7.1	44.8	8.3	287.0	41,629	6.4	43.5	6.5	92.9	13,475	5.4
11-May-97	3669.8	532,245	14.4	57.9	7.2	448.6	65,064	12.0	53.6	6.5	94.3	13,678	9.1
18-May-97	3360.0	487,312	15.6	60.1	6.7	502.0	72,800	14.7	58.5	6.3	96.5	13,991	29.1
22-Jun-97	1638.7	237,669	17.9	64.2	7.9	233.3	33,834	17.2	63.0	8.1	99.0	14,361	21.8
15-Jul-97	no so	olution*	7.3	45.1		no solution		19.2	66.6			no s	solution
12-Aug-97	4528.3	656,748	22.9	73.2	6.8	513.2	74,427	21.8	71.2	6.2	118.2	17,146	17.4
14-Oct-97	9737.6	1,412,268	7.0	44.6	6.7	481.0	69,767	7.7	45.9	6.2	121.0	17,543	7.3
26-Nov-97	14248.9	2,066,551	-1.5	29.3	4.9	251.1	36,415	-0.8	30.6	4.6	80.3	11,642	3.2
18-Feb-98	14289.3	2,072,413	-2.0	28.4	12.5	2285.8	331,511	-2.2	28.0	2.6	99.3	14,396	15.5
9-Mar-98	12602.4	1,827,763	-2.1	28.2	2.5	6477.7	939,483	-2.2	28.0	4.7	137.2	19,897	15.8
1-Apr-98	12324.9	1,787,513	4.7	40.5	7.5	182.5	26,470	3.7	38.7	9.1	48.9	7,099	2.6
1-May-98	9603.6	1,392,830	15.4	59.7	7.2	114.4	16,586	13.1	55.6	6.8	95.3	13,827	5.7
4-May-98	2628.6	381,227	16.6	61.9	7.0	242.7	35,203	14.6	58.3	6.7	85.9	12,463	4.9
19-May-98	5179.0	751,120	11.8	53.2	8.4	277.6	40,254	11.8	53.2	10.5	85.5	12,398	3.2
16-Jun-98	10187.5	1,477,513	—	—	—	203.6	29,531	—	—	—	79.5	11,526	4.1
27-Jul-98	2853.1	413,796	28.4	83.1	7.0	295.5	42,850	26.5	79.7	7.1	109.2	15,844	11.6
24-Aug-98	6306.6	914,668	—	—		281.2	40,785	—	—	—	98.1	14,225	4.7
28-Sep-98	8841.3	1,282,278	—	—	—	284.0	41,184	—	—	—	131.7	19,098	8.7
26-Oct-98	13218.9	1,917,176		—		251.1	36,414		—		58.2	8,435	3.3
18-Nov-98	9905.3	1,436,590	—	—	—	224.5	32,560	—	—	—	45.5	6,606	1.6

Table 11. Back-calculated layer moduli at Dickey Lake.

* Back-calculation program could not converge on a solution. † No data were found in the record for the other parameters when the FWD tests were done (the FWD test generates the data for the back-calculation routine).

Thicknoss (mm)	1	77.8			152.4					5588.0			
		AC			Base					Subgrad	e		
Date	Back-calcu	lated modulus	Tempe	rature	Moisture content	Back-calcu	lated modulus	Temp	erature	Moisture content	Back-ca mod	alculated dulus	
	(MPa)	(psi)	(ºC)	(ºF)	(%)	(MPa)	(psi)	(ºC)	(⁰F)	(%)	(MPa)	(psi)	(%)
21-Oct-96	9498.8	1,377,637	2.5	36.5	45.7	79.1	11,477	4.5	40.1	38.8	84.2	12,215	4.7
4-Dec-96	1379.0	200,000	-8.5	16.7	11.0	13790.0	2,000,001	-6.6	20.12	26.3	329.3	47,758	114.6
3-Apr-97	4033.5	584,982	3.3	37.94	33.4	37.6	5,456	2.0	35.6	38.7	184.1	26,698	12.4
24-Apr-97	1379.0	200,000	7.0	44.6	50.4	486.4	70,546	5.6	42.08	40.1	89.5	12,980	8.4
8-May-97	1575.4	228,479	*	—	—	391.6	56,800	—	—	_	65.3	9,473	1.3
18-Jun-97	1379.0	200,000	25.7	78.26	41.9	161.4	23,413	24.1	75.38	40.7	73.3	10,633	8.3
19-Aug-97	1379.0	200,000	22.3	72.14	39.4	178.7	25,922	21.6	70.88	40.3	64.2	9,305	17.7
16-Sep-97	1442.8	209,259	16.3	61.34	36.9	103.0	14,934	17.5	63.5	39.8	67.5	9,789	5.2
13-Nov-97	8459.8	1,226,952	-1.3	29.66	22.4	7351.4	1,066,194	0.2	32.36	38.0	89.8	13,030	1.5
27-Nov-97	11454.8	1,661,314	-2.5	27.5	19.1	7571.2	1,098,066	-1.7	28.94	31.8	115.6	16,769	1.3
24-Feb-98	4058.2	588,575	-0.2	31.64	31.3	58.0	8,415	-0.6	30.92	38.0	156.9	22,750	4.7
24-Mar-98	1454.1	210,898	0.5	32.9	31.4	88.1	12,777	-0.9	30.38	34.7	162.4	23,558	10.9
28-Apr-98	1420.9	206,079	14.1	57.38	34.3	70.9	10,283	11.7	53.06	39.1	110.7	16,052	1.7
20-May-98	1379.0	200,000	19.6	67.28	34.7	69.3	10,058	18.5	65.3	39.7	75.4	10,939	2.6
27-May-98	1379.0	200,000	23.2	73.76	35.6	34.2	4,957	21.9	71.42	40.1	75.3	10,921	19
16-Jun-98	2093.2	303,579	19.7	67.46	34.7	41.6	6,029	18.4	65.12	38.2	79.6	11,538	4.9
10-Jul-98	NO USA	BLE DATA [†]	—	—	—	NO USA	BLE DATA	—	—	—	NO USAB	LE DATA	
23-Sep-98	1379.0	200,000	—	—	_	94.7	13,741	—	—	—	71.9	10,431	5

Table 12. Back-calculated layer moduli at Wolf Point.

* No data were found in the record for the other parameters when the FWD tests were done (the FWD test generates the data for the back-calculation routine). † Absolute Arithmatic (AA) values exceeded 20.0.

Thickness	33	30.2	482.6 Base						5588.0				
(mm)	ŀ	AC			Base					Subgrade)		ΑΑ
Date	Back-ca mod	alculated dulus	Tempe	erature	Moisture content	Back-ca mod	alculated dulus	Temp	erature	Moisture content	Back-o mo	alculated	
	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(%)
3-Apr-96	3,332.7	483,350	-1.9	28.6	0.1	1337.7	194,004	-2.2	28.0	15.8	379.6	55,060	12.4
13-May-96	3,043.2	441,358	8.6	47.5	4.0	593.3	86,046	7.3	45.1	—	66.9	9,700	3.9
30-May-96	1,379.0	200,000	18.1	64.6	5.0	401.4	58,219	14.1	57.4	20.6	68.9	9,993	18.4
19-Jun-96	3,446.1	499,794	19.9	67.8	5.0	311.7	45,203	18.8	65.8	30.9	78.9	11,442	5.0
24-Jul-96	1,679.9	243,644	25.1	77.2	5.4	129.6	18,796	22.7	72.9	30.4	121.2	17,574	5.4
18-Sep-96	3,709.6	538,009	*		—	207.6	30,106	—	—	—	108.6	15,750	6.2
3-Oct-96	3,806.7	552,091	10.2	50.4	4.1	244.4	35,443	11.2	52.2	29.6	105.2	15,255	3.4
25-Apr-97	4,153.6	602,403	7.8	46.0	3.7	198.0	28,720	5.5	41.9	29.8	89.4	12,973	2.1
9-May-97	3,243.0	470,345	11.1	52.0	4.0	427.4	61,992	8.5	47.3	30.1	90.8	13,163	8.9
21-May-97	2,508.8	363,862	13.8	56.8	4.2	294.8	42,750	12.3	54.1	30.1	88.5	12,841	7.9
20-Jun-97	1,732.3	251,242	20.5	68.9	5.3	229.8	33,327	18.5	65.3	32.1	94.6	13,719	6.2
9-Aug-97	2,518.5	365,261	22.7	72.9	4.7	995.3	144,346	23.9	75.0	31.3	58.8	8,528	3.9
15-Oct-97	4,249.1	616,254	9.2	48.6	3.7	136.6	19,809	9.9	49.8	31.4	108.4	15,726	5.1
26-Nov-97	7,482.0	1,085,134	—	—	—	325.5	47,209	—	—	—	94.9	13,766	2.5
19-Feb-98	9,302.1	1,349,102	-1.4	29.5	2.8	140.0	20,299	-2.5	27.5	17.4	152.0	22,042	6.5
31-Mar-98	2,191.4	317,820	4.2	39.6	3.7	324.3	47,036	2.3	36.1	30.3	75.9	11,007	2.8
28-Apr-98	1,989.6	288,560	13.4	56.1	4.9	164.5	23,865	10.2	50.4	31.8	92.2	13,366	3.6
28-May-98	1,775.1	257,445	17.7	63.9	5.4	124.8	18,104	15.7	60.3	32.3	117.2	16,994	18
18-Jun-98	4,997.8	724,840	—	—	—	68.4	9,916	—	—	—	109.2	15,844	5.5
28-Jul-98	1,438.0	208,562	16.4	61.5	5.5	99.1	14,367	16.5	61.7	32.6	114.7	16,633	2.1
25-Aug-98	2,660.0	385,789			—	76.8	11,137	—	—	—	111.2	16,134	3
29-Sep-98	2,790.0	404,638	—	—	—	172.1	24,961	—	—	—	109.2	15,834	2.7
27-Oct-98	7,009.6	1,016,621	—	—	—	72.5	10,518	—	—	—	116.0	16,818	2.6
19-Nov-98	10,378.5	1,505,215	—	—	—	122.5	17,765	—	—	—	129.4	18,773	6.1

Table 13. Back-calculated layer moduli at Sweetgrass.

* No data were found in the record for the other parameters when the FWD tests were done (the FWD test generates the data for the back-calculation routine).

Thickness	22	8.6	139.7 Boog							5588.0			
(mm)	A	VC			Base					Subgrade)		ΔΔ
Date	Back-calcula	ated modulus	Tempe	rature	Moisture content	Back-calcula	ated modulus	Tempe	erature	Moisture content	Back-calculated modulus		
	(MPa)	(psi)	(ºC)	(ºF)	(%)	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(%)
15-Mar-97	27,580.00	3,999,998	-6.4	20.5	7.2	13,790.00	2,000,001	-6.7	19.9	12.3	1,488.40	215,868	54.1
3-Apr-97	4,212.50	610,944	3.3	37.9	21	26.3	3,818	1.8	35.2	33.7	237.5	34,439	9.3
24-Apr-97	3,937.50	571,065	*	—	—	13.8	2,000	—	—	_	117.8	17,078	6.1
8-May-97	5,346.50	775,422	12.5	54.5	21.6	13.8	2,000	11.3	52.3	34.1	81.6	11,833	6.7
22-May-97	1,379.00	200,000	14.1	57.4	21.6	108.6	15,745	12.9	55.2	34	53.3	7,729	5.1
19-Jun-97	1,379.00	200,000	24.9	76.8	22.7	94.1	13,652	23.7	74.7	33.5	61.2	8,879	3.9
19-Aug-97	689.5	100,000	23.5	74.3	22.1	86.6	12,557	22.6	72.7	33	55.1	7,986	7.7
13-Nov-97	6,140.50	890,571	0.5	32.9	18.5	12,819.80	1,859,292	0.6	33.1	32.6	94.2	13,655	1.4
27-Nov-97	9,871.90	1,431,743	-0.9	30.4	11.7	5,922.50	858,959	-1.1	30.0	30.2	96	13,921	1.8
24-Feb-98	4,312.90	625,508	-0.5	31.1	20.8	333.8	48,419	-1.3	29.7	29	120.2	17,440	4.6
25-Mar-98	4,990.10	723,725	_	_	_	201.6	29,245	—	_		152.5	22,117	7
28-Apr-98	2,721.70	394,734	13.6	56.5	20.8	51.5	7,470	12	53.6	34.1	54.7	7,932	3.2
20-May-98	2,007.60	291,169	19.5	67.1	22.4	200.6	29,093	18.2	64.8	35.6	54.2	7,858	1.6
15-Jun-98	1,781.30	258,340	20.6	69.1	22.4	629.9	91,354	19.5	67.1	34.3	59.9	8,691	10.8
10-Jul-98	1,379.00	200,000	28.4	83.1	23.7	13.8	2,000	27.1	80.8	34.5	86.9	12,601	15.5
26-Aug-98	1,379.00	200,000	_	—	_	49.9	7,236	—	_	_	52.4	7,599	10.9
26-Aug-98	1,379.00	200,000	—		—	131.9	19,130	—			58.3	8,460	9.5
23-Sep-98	1,837.90	266,549	—	—	—	51.4	7,460	—	—		68.4	9,923	5.2
28-Oct-98	2,588.50	375,422	—	—	—	13.9	2,010	—	—		74.1	10,754	3.9
24-Nov-98	6,063.70	879,428	—			95.3	13,823	—	—		77.5	11,233	2.2

Table 14. Back-calculated layer moduli at Scobey/Redstone.

* No data were found in the record for the other parameters when the FWD tests were done (the FWD test generates the data for the back-calculation routine).

Thickness	76	.2	2 584.2 5588.0										
(mm)	A	0			Base					Subgrade			
Date	Back-calcula	ted modulus	Tempe	erature	Moisture content	Back-calo	ulated modulus	Tempe	rature	Moisture content	Back-ca mod	lculated lulus	AA
	(MPa)	(psi)	(ºC)	(ºF)	(%)	(MPa)	(psi)	(°C)	(ºF)	(%)	(MPa)	(psi)	(%)
15-May-96	34,475.00	4,999,998	7.3	45.1	35.6	134.5	19,509	5.1	41.2	40.6	202.9	29,428	19.9
29-May-96	27,580.00	3,999,998	*	—		103.6	15,022	—	—	—	179.9	26,096	19.2
19-Jun-96	27,580.00	3,999,998	16.4	61.5	28.9	255.3	37,028	15.1	59.2	41.3	221.5	32,130	8.1
24-Jul-96	27,580.00	3,999,998	20.6	69.1	28.7	187	27,118	19	66.2	38.1	272.9	39,585	16.9
18-Sep-96	27,234.90	3,949,944	14.2	57.6	29.2	157.8	22,884	14.4	57.9	38.2	253.1	36,702	20.4
3-Oct-96	28,357.50	4,112,769	11	51.8	27.6	158.5	22,986	10.5	50.9	37.7	270.4	39,219	20.4
26-Apr-97	27,580.00	3,999,998	4	39.2	28.8	158	22,912	1.7	35.1	40.6	196.2	28,455	16.3
9-May-97	27,580.00	3,999,998	7.5	45.5	28.4	163.6	23,727	5.3	41.5	40.9	198.3	28,754	17
21-May-97	27,580.00	3,999,998	11.8	53.2	29	160.1	23,220	9.9	49.8	39	183.1	26,554	15.6
20-Jun-97	23,526.80	3,412,154	15.6	60.1	30.3	148	21,467	13.9	57.0	31.2	168.6	24,447	16.4
15-Jul-97	30,497.30	4,423,104	17.7	63.9	29.6	134.1	19,450	15.5	59.9	38.6	164.8	23,896	24.9
12-Aug-97	34,475.00	4,999,998	—	—	—	183.2	26,563	—	—	—	214.3	321,143	13.1
20-Aug-97	34,475.00	4,999,998	—	—	—	184.4	26,740	—	—	—	241	34,950	13.3
4-Feb-97	4,837.00	701,525	—	—		6,480.90	939,939	—	—		2,436.70	353,408	13.3
14-Oct-97	3,927.70	569,639	—	—	—	131.5	19,069	—	—	—	274.7	39,835	13.3
26-Nov-97	44,791.10	6,496,169		—		749.4	108,682		_	_	276.5	40,106	13.3
18-Feb-98	2,701.00	391,740	—	—		1,155.20	167,543	—	—	—	956.7	138,757	13.3
24-Feb-98	8,137.80	1,180,244	—	—	—	133.7	19,390	—	—	—	107.7	15,615	13.3
25-Mar-98	3,823.40	554,516	—	—	—	214.6	31,130	—	—	—	83.8	12,151	13.3
31-Mar-98	5,858.00	849,595		—		135.6	19,660	—	—	—	185.8	26,949	13.3

Table 15. Back-calculated layer moduli at East Glacier.

* No data were found in the record for the other parameters when the FWD tests were done (the FWD test generates the data for the back-calculation routine.

Thickness (mm)	23	35.0	60)3.3	558	88.0	• •
		AC	В	ase	Sub	grade	AA
Date	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(%)
30-Apr-96	4,156.4	602,816	174.0	25,229	100.4	14,556	9.3
23-Jul-96	1,908.8	276,840	118.0	17,113	106.4	15,436	15.8
12-Aug-96	1,379.0	200,000	129.8	18,818	123.1	17,859	14.3
17-Sep-96	5,034.1	730,114	142.3	20,641	116.4	16,888	9.6
1-Oct-96	6,637.5	962,650	89.6	13,002	131.2	19,030	9.8
29-Oct-96	1,379.0	200,000	650.4	94,331	67.7	9,825	8.6
8-Jan-97	3,053.1	442,799	3,629.7	526,419	378.5	54,901	9.4
14-Mar-97	5,348.3	775,685	13,790.0	2,000,001	238.4	34,574	8.8
2-Apr-97	1,439.6	208,785	301.7	43,751	90.7	13,161	20.9
23-Apr-97	1,379.0	200,000	278.8	40,439	87.6	12,698	18.9
7-May-97	2,982.3	432,531	269.5	39,089	90.3	13,096	10.5
28-May-97	3,858.3	559,573	187.1	27,136	101.5	14,723	7.5
13-Jun-97	1,798.8	260,882	255.3	37,022	103.1	14,958	11.0
21-Jul-97	1,554.6	225,473	210.6	30,550	88.5	12,841	12.7
18-Aug-97	3,948.0	572,590	187.8	27,231	88.6	12,847	4.6
16-Sep-97	2,828.9	410,287	264.4	38,343	108.0	15,659	1.3
21-Oct-97	4,266.2	618,744	162.3	23,544	114.0	16,531	1.9
13-Nov-97	8,760.9	1,270,611	234.8	34,047	96.7	14,030	1.7
5-Jan-98	18,321.1	2,657,153	2,115.4	306,803	116.1	16,836	3.1
23-Feb-98	8,137.8	1,180,244	133.7	19,390	107.7	15,615	3.9
25-Mar-98	3,823.4	554,516	214.6	31,130	83.8	12,151	4.8

Table 16. Back-calculated layer moduli at Alzada.

Thickness (mm)	254.0 AC		43	1.8	55	88.0	
Data	A	AC	Ba	ise	Sub	grade	AA
Dale	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(%)
23-Oct-96	1,905.3	276,324	2,049.9	297,306	142.3	20,632	10
13-Nov-96	1,379.0	200,000	5,813.6	843,169	322.2	46,736	50.4
13-Mar-97	2,625.6	380,793	1,282.3	185,975	152.6	22,129	5.2
1-Apr-97	1,671.5	242,415	872.0	126,472	162.8	23,608	18.8
22-Apr-97	1,379.0	200,000	400.3	58,051	186.1	26,991	16.2
6-May-97	3,830.2	555,498	356.0	51,625	200.5	29,083	5.7
23-May-97	2,576.4	373,666	332.4	48,204	204.5	29,655	17.4
16-Jun-97	11,518.8	1,670,599	715.6	103,783	196.3	28,466	6.8
21-Jul-97	3,666.1	531,706	157.6	22,850	216.2	31,350	11.6
18-Aug-97	2,491.1	361,290	372.3	53,993	211.4	30,657	1.3
15-Sep-97	3,748.6	543,666	320.4	46,464	268.0	38,869	2.6
27-Nov-97	15,771.6	2,287,397	75.3	10,925	256.4	37,187	1.8
5-Jan-98	16,176.0	2,346,041	959.5	139,153	167.9	24,349	1.2
2-Feb-98	4,873.7	706,844	263.5	38,221	148.6	21,559	2.9
23-Feb-98	7,619.3	1,105,044	195.2	28,317	148.5	21,535	8.1
30-Mar-98	7,357.3	1,067,042	112.7	16,345	159.8	23,169	5.7
16-Apr-98	12,576.3	1,823,978	266.5	38,656	151.2	21,923	5.6
27-Apr-98	2,815.9	408,393	148.0	21,461	194.3	28,179	2.5
28-Apr-98	1,971.4	285,921	248.0	35,974	123.9	17,966	2.6
30-Apr-98	10,129.8	1,469,148	33.7	4,891	487.7	70,736	3.0
21-May-98	4,455.1	646,136	206.4	29,937	175.8	25,502	5.2
26-May-98	1,919.6	278,409	144.1	20,902	243.6	35,332	17.1
17-Jun-98	12,154.1	1,762,740	55.5	8,055	374.4	54,303	5.5
27-Jul-98	2,008.1	291,246	212.1	30,755	187.0	27,125	4.1
27-Aug-98	4,744.2	688,058	167.0	24,217	173.7	25,191	3.3
22-Oct-98	9,662.9	1,401,441	562.9	81,635	134.5	19,506	2.3
25-Nov-98	10,031.8	1,454,942	533.4	77,364	161.6	23,440	5.0
25-Jan-99	19,280.2	2,796,263	2,801.7	406,343	165.9	24,058	1.0

Table 17. Back-calculated layer moduli at Bull Mountain.

Thickness (mm)	15	52.4	51	8.16	5	588	AA
Data	Å	AC	B	ase	Sub	grade	
Date	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(%)
26-Nov-96	6,188.9	897,597	241.8	35,072	121.4	17,600	12.6
12-Mar-97	1,844.1	267,452	171.3	24,843	110.6	16,047	18.4
1-Apr-97	5,280.1	765,792	131.9	19,130	129.2	18,738	3.9
22-Apr-97	5,538.2	803,216	122.2	17,726	130.1	18,873	1.4
6-May-97	1,379.0	200,000	158.1	22,923	123.4	17,894	9.9
23-May-97	2,463.1	357,228	157.1	22,785	133.8	19,406	9.1
16-Jun-97	2,295.6	332,943	136.6	19,807	164.9	23,920	10.1
24-Jul-97	1,624.4	235,586	148.7	21,570	121.4	17,600	4.4
18-Aug-97	3,564.7	517,001	130.1	18,870	124.0	17,986	6.9
8-Feb-97	21,364.6	3,098,570	3,557.3	515,923	288.4	41,834	26.3
23-Feb-98	7,896.9	1,145,307	115.6	16,769	92.1	13,357	5.5

Table 18. Back-calculated layer moduli at Livingston.

Table 19. Back-calculated layer moduli at Loma.

Thickness (mm)	15	52.4	68	5.8	55	88.0	• •
Data	A	AC	Ba	ise	Sub	grade	~~
Date	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(%)
4-Apr-96	10,994.0	1,594,487	490.5	71,134	177.0	25,672	17.0
29-Apr-96	2,147.7	311,488	710.4	103,038	86.2	12,496	18.1
13-May-96	3,930.8	570,095	589.7	85,525	126.4	18,335	7.4
30-May-96	1,379.0	200,000	329.6	47,804	120.3	17,449	20.2
20-Jun-96	6,393.2	927,217	880.7	127,733	146.2	21,206	11.4
20-Aug-96	3,906.2	566,525	437.3	63,416	138.4	20,067	6.3
19-Sep-96	6,056.6	878,410	472.0	68,460	132.0	19,145	15.2
2-Oct-96	4,095.6	594,001	444.1	64,409	127.0	18,421	10.1
21-Oct-96	2,020.7	293,072	973.3	141,163	104.1	15,105	9.6
6-Dec-96	1,379.0	200,000	4,336.7	628,959	246.9	35,805	79.0
7-Jan-97	1,379.0	200,000	6,404.9	928,914	451.7	65,517	53.0
18-Mar-97	13,261.1	1,923,286	1,379.0	200,000	198.2	28,739	9.7
25-Apr-97	27,580.0	3,999,998	2,001.1	290,226	140.9	20,441	5.2
8-May-97	1,379.0	200,000	657.7	95,384	126.5	18,349	9.8
22-May-97	5,228.7	758,332	795.9	115,436	134.0	19,432	2.8
20-Jun-97	1,734.8	251,599	671.1	97,332	136.5	19,795	9.8
17-Jul-97	4,149.7	601,836	775.0	112,406	141.9	20,580	8.6
25-Jul-97	4,122.4	597,878	762.2	110,547	167.8	24,340	2.1
11-Aug-97	6,360.9	922,533	599.5	86,946	156.3	22,664	8.1
16-Oct-97	15,680.6	2,274,195	529.8	76,843	135.3	19,619	5.2
14-Nov-97	16,702.5	2,422,411	611.0	88,611	103.6	15,019	1.6
2-Feb-98	7,511.1	1,089,355	667.4	96,795	153.5	22,265	1.5
24-Feb-98	24,396.0	3,538,211	430.0	62,366	186.0	26,980	3.1
31-Mar-98	13,414.2	1,945,490	523.1	75,872	108.4	15,718	2.8

Thickness (mm)	12	1.9	37	0.8	55	88.0	• •
Date	A	AC	Ba	ise	Sub	grade	AA
Date	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(%)
30-Apr-96	6,282.2	911,127	104.1	15,096	146.3	21,220	9.8
16-May-96	8,081.7	1,172,112	169.9	24,643	188.6	27,346	9.0
28-May-96	5,035.0	730,235	142.3	20,631	175.3	25,426	12.0
17-Jun-96	2,614.7	379,222	282.7	41,001	231.8	33,620	8.4
23-Jul-97	12,939.3	1,876,627	165.5	24,006	464.8	67,416	6.2
19-Aug-96	9,737.8	1,412,304	285.5	41,414	246.3	35,725	8.3
19-Sep-97	8,990.9	1,303,969	279.7	40,563	228.9	33,205	17.7
17-Mar-97	2,066.9	299,762	405.7	58,846	384.1	55,705	19.9
5-Apr-97	7,884.0	1,143,441	175.6	25,474	171.4	24,853	6.9
11-May-97	5,414.5	785,283	253.8	36,807	198.7	28,823	1.3
18-May-97	2,549.3	369,737	280.8	40,727	204.7	29,692	3.3
23-Jun-97	2,282.3	331,011	313.5	45,468	193.5	28,060	17.1
15-Jul-97	2,269.0	329,083	329.8	47,830	194.2	28,160	8.6
11-Aug-97	1,656.6	240,265	341.2	49,482	217.1	31,483	11.8
26-Nov-97	17,832.6	2,586,307	304.9	44,224	188.8	27,379	3.5
17-Feb-98	6,494.9	941,967	368.6	53,452	212.9	30,874	2.8
9-Mar-98	8,200.0	1,189,267	190.8	27,678	144.5	20,958	4.1
1-Apr-98	6,454.6	936,129	187.5	27,189	177.1	25,685	4.4

Table 20. Back-calculated layer moduli at Swan Lake.

Using all the back-calculated data, we determined monthly subgrade and base course moduli. When more than one monthly back-calculated modulus was available, and if the data looked reasonable, average values were used for the month. These results are presented in Tables 21, 22, 23, and 24.

	Dicke	y Lake	Wolf	Point	Swee	tgrass	Scobey	Redstone	East	Glacier	Alz	ada	Bul	Mtn	Livin	gston	Lo	ma	Swar	n Lake
Soil	A-2-4	4/A-4	Α	-6	A	-6	A	\-6	A	\-4	A	\-6	A	-4	A	-1	A	-1	A	-1
Month	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)
Sep	122.5	17,766	*		108.6	15,751	—	_	253.1	36,708			—	_		_	132.0	19,144	228.9	33,198
Oct	79.1	11,472	84.2	12,212	105.2	15,257	—	_	270.4	39,217	142.3	20,638	142.3	20,638	_	_	115.6	16,766		_
Nov	_	_		_	—	_	—	_	—	—	322.2	46,730	322.2	46,730	121.4	17,607	—	_	—	—
Dec	_	_	329.3	47,759		_	—	_	—	_	_		_	_	_	_	246.9	35,809	_	_
Jan		_	_	_	_	_		—	—	_	—	_	—	_	—	_	451.7	65,511	—	_
Feb	_	_	_	_	_	_	—	—	2436.7	353,413	—	_	—	_	288.4	41,829	—	_	—	_
Mar		_	_	_		_	1488.4	215,867	—	_	152.6	22,132	152.6	22,132	110.6	16,041	198.2	28,745	384.1	55,707
April	85.7	12,429	136.8	19,840	89.4	12,966	177.6	25,758	196.2	28,455	174.4	25,294	174.4	25,294	129.7	18,811	140.9	20,435	171.4	24,859
May	95.4	13,836	65.3	9,471	89.6	12,995	67.4	9,775	190.7	27,658	202.5	29,369	202.5	29,369	128.6	18,651	130.2	18,883	201.7	29,253
Jun	99.0	14,358	73.3	10,631	94.6	13,720	61.2	8,876	168.6	24,453	196.3	28,470	196.3	28,470	164.9	23,916	136.5	19,797	193.5	28,064
July							_	_	164.8	23902	216.2	31357	216.2	31357	121.2	17579	154.9	22466	194.2	28166
Aug	118.2	17143	64.2	9311	58.8	8528	55.1	7992	214.3	31082	211.4	30661	211.4	30661	124.0	17984	156.3	22669	217.1	31488

Table 21. Average monthly subgrade moduli (Sept. 1996–Aug. 1997 data).

* No FWD tests conducted.

Table 22. Average monthly base moduli (Sep. 1996–Aug. 1997 data).

	Dicke	y Lake	Wolf	Point	Swee	tgrass	Scobey/	Redstone	East (Glacier	Alz	zada	Bul	l Mtn	Livin	gston	Lo	oma	Swar	n Lake
Month	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)
Sept	410.6	59,550	*	—	207.6	30,109		—	157.8	22,886	142.3	20,638	_	_	_	_	472.0	68,455	279.7	40,566
Oct	528.3	76,621	79.1	11,472	244.4	35,446		—	158.5	22,988	370.0	53,662	2049.9	297,302	_	_	708.7	102,785	_	_
Nov	-		—			—		_		—		_	5813.7	843,176	241.8	35,069	—	—	_	—
Dec			13790.0	2,000,000		—		_		—		_	—				4336.7	628,963	_	
Jan	_		—			—		—		—	3629.7	526,425	—	_	_	_	6404.9	928,920	—	_
Feb	_	_	—	_	—		-	—	_	—	_	—	—	_	3557.3	515,942	—	—	_	_
Mar	-		—			—	13790.0	2,000,000		—	13,790.0	2,000,000	1282.3	185,975	171.3	24,844	1379.0	200,000	405.7	58,840
Apr	559.5	81,146	262.0	37,999	198.0	28,716	20.1	2,915	158.0	22,915	290.2	42,088	636.1	92,255	127.1	18,434	2001.1	290,225	175.6	25,468
May	475.3	68,934	391.6	56,795	361.1	52,371	61.2	8,876	161.8	23,466	228.3	33,111	344.2	49,920	157.6	22,857	726.8	105,410	267.3	38,767
Jun	233.3	33,836	161.4	23,408	229.8	33,328	94.1	13,648	148.0	21,465	255.3	37,027	715.6	103,785	136.6	19,811	671.1	97,331	313.5	45,468
July	459.4	66,628	_		129.6	18,796		_	187.0	27,121	210.6	30,545	157.6	22,858	148.7	21,567	768.6	111,476	329.8	47,833
Aug			_	_			_	_			187.8	27,238	372.3	53,998	130.1	18,869	599.5	86,950	341.2	49,487

* No FWD tests conducted.

	Dicke	y Lake	Wolf	Point	Sweet	t-grass	Sco Reds	bey/ stone	East	Glacier	Alz	ada	Bul	Mtn	Livin	gston	Lo	oma	Swar	1 Lake
Soil	A-2-	4/A-4	A	-6	A	-6	A	-6	A	\-4	A	-6	A	-4	A	-1	A	\-1	A	-1
Month	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)
Sept	*		67.5	9,790				_	_		108.0	15,664	268.0	38,869			_		—	_
Oct	121.0	17,549	_	_	108.4	15,722	_	_	274.7	35,926	114.0	—	_	_	_	_	135.3	19,623	—	—
Nov	80.3	11,646	102.7	14,895	94.9	13,764	95.1	13,793	276.5	40,103	96.7	14,025	256.4	37,188	_	_	103.6	15,025	188.8	27,382
Dec	_	_	—	_		_		_	_	_	—	—	—	_	_	_	_	—	—	—
Jan	_	_	_	_		_	_	_	_	_	116.1	16,838	167.9	24,352	_	_	_	—	—	—
Feb	99.3	14,402	156.9	22,756	152.0	22,045	120.2	17,433	532.2	77,189	107.7	15,620	148.6	21,552	190.3	27,600	169.8	24,627	212.9	30,877
Mar	137.2	19,898	162.4	23,553	75.9	11,008	152.5	22,117	134.8	19,551	83.8	12,154	159.8	23,176	_	_	108.4	15,722	144.5	20,957
Apr	48.9	7,092	110.7	16,055	92.2	13,372	54.7	7,933	_	—		—	239.3	34,706		_	_	—	177.1	25,685
May	88.9	12,893	75.4	10,935	117.2	16,998	54.2	7,861	_	—	—	—	209.7	30,413	_	_	_	—	—	—
Jun	79.5	11,530	79.6	11,545	109.2	15,838	59.9	8,687	_	—	—	—	374.4	54,300	_	_	_	—	—	—
July	109.2	15,838			114.7	16,635	86.9	12,604	_			—	187.0	27,122	_	_	_			—
Aug	98.1	14,228	—	_	111.2	16,128	52.4	7,600	—	—	—	—	173.7	25,193	_	—	—		—	—

 Table 23. Average monthly subgrade moduli (Sep. 1997–Aug. 1998 data).

* No FWD tests conducted.

	Dicke	y Lake	Wol	f Point	Swee	t-grass	Sc Rec	obey/ Istone	East	Glacier	Alz	zada	Bul	l Mtn	Livin	gston	Lo	oma	Swar	n Lake
Month	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)
Sep	*	_	103.0	14,938	—	—		_	_	—	264.4	38,347	320.4	46,468						—
Oct	481.0	69,761	—	_	136.6	19,811	_	—	131.5	19,072	162.3	23,539				_	529.8	76,838	_	_
Nov	251.1	36,418	7461.3	1,082,132	325.5	47,208	9371.2	1,359,130	749.4	115,218	234.8	34,054	75.3	10,921		_	611.0	88,615	304.9	44,220
Dec	_	_	—	_	_	_	_	—	—	-	—	—		-		_		_	_	_
Jan	_	_	—	_	_	-	_	—	_		2115.4	306,802	959.5	139,164		_		_	_	_
Feb	2285.8	331,516	58.0	8,412	140.0	20,305	333.8	48,412	644.5	93,477	133.7	19,391	229.4	33,270	115.6	16,766	548.7	79,579	368.6	53,459
Mar	6477.7	939,478	88.1	12,777	324.3	47,034	201.6	29,239	175.1	25,396	214.6	31,124	112.7	16,345	_		523.1	75,867	190.8	27,672
Apr	182.5	26,468	70.9	10,283	164.5	23,858	51.5	7,469	_	-	—	—	174.1	25,250		_	_	_	187.5	27,194
May	211.5	30,674	51.8	7,513	124.8	18,100	200.6	29,094	_			—	175.3	25,424	_	_	_	_		_
Jun	203.6	29,529	41.6	6,033	68.4	9,920	629.9	91,356	_			—	55.5	8,049		_		_	_	_
July	295.5	42,859	—	_	99.1	14,373	13.8	2,002				—	212.1	30,762	_					_
Aug	286.2	41,510	_	_	76.8	11,139	49.9	7,237	_	_		_	167.0	24,221		_	_	_		_

* No FWD tests conducted.

Discussion of weather data

The resilient modulus of a material is influenced by its moisture content. Precipitation, as well as thaw weakening, contributes moisture to the structure. Estimates of the M_r for materials determined from FWD measurements are also dependent on the timing of those measurements relative to weather phenomena. The National Climatic Data Center (NCDC) weather data that were used for the sites were from the nearest stations with sufficiently complete records to be useful. In no case were stations used that were more than 22 miles from the test sections.

Table 25 gives the weather data and compares the 96–97 season with the 97–98 season. At only two sites, Sweetgrass and Loma, was the 96–97 season drier than the 97–98 season.

Table 26 presents the M_r information. There are instances where the minimum M_r is lower during a drier season than the minimum M_r from a wetter season. In nine out of the ten sites studied, the minimum M_r was determined during the 97–98 season. The 97–98 season measurements were taken by the FWD. Only Wolf Point had a lower M_r value during the first, wetter season.

At five sites, the minimum M_r value occurred during the drier season. At two sites, the differences in M_r data are statistically insignificant; and at three sites the M_r data follow the precipitation pattern (i.e., the lower Mr was measured during the wetter season).

To determine whether a site's minimum resilient modulus is a function of spring thaw, or just excess precipitation, it is necessary to know whether the specific measurements were taken during periods of greater than average precipitation, average precipitation, or less than average precipitation, as well as whether the measurements were taken during the critical period or not. These relationships determine whether the back-calculated resilient modulus for a material is appropriate or needs adjustment. We have chosen to make no adjustments when the resilient modulus was taken during a "normal" or "drier" season. However, if the season was wetter than normal, then adjustments should be considered.

Critical periods could only be determined for five sites owing to data problems. Two of the five sites analyzed had M_r measurements taken during the critical period in both 1996–1997 and 1997–1998. A third site had measurements taken when only the subgrade was in the critical period, during the first winter/spring season, but the critical period could not be determined for the second winter/spring season. A fourth site had no critical periods, and data gaps prevented determination of the critical periods for the fifth site.

49

	Precipitation of	luring tes	st seaso	ns comp	ared to 1971-to-2	000 (30-yr)	normals		
Legation	1971–2000 normals	1996	1997	1998	1971–2000 normals	1996– 1997	1997– 1998	96-97 vs.	Comments
Location	Full (January t	year valu	ues)ecembe	er)	Winter/s (October thro	pring value ough April V	es /alues)	(numerically)	(See Table 26 below)
				(inch	es)		1		
Dickey Lake*	20.12	No Data	>9.85 Drier ^{**}	21.19 Wetter	10.30	9.82 Normal**	8.26 Drier	Wetter	Spring 97 M _r > Spring 98 M _r Should be other way because 96–97 is wetter than 97–98
Wolf Point [†]	13.05	12.41 Normal	12.89 Normal	13.16 Normal	3.50	5.23 Wetter	3.08 Drier	Wetter	
Sweetgrass	14.02	>6.39 Drier	10.63 Drier	12.57 Drier	3.53	1.13 Drier	3.41 Normal	Drier	
Scobey/Redstone	12.90	12.87 Normal	12.20 Normal	13.61 Wetter	3.26	4.82 Wetter	2.23 Drier	Wetter	Spring 97 M _r > Spring 98 M _r Should be other way because 96–97 is wetter than 97–98
East Glacier	29.38	>35.75 Wetter	>28.65 Normal	No Data	16.73	23.27 Wetter	13.19 Drier	Wetter	Spring 97 M _r > Spring 98 M _r Should be other way because 96–97 is wetter than 97–98
Alzada	14.00	14.52 Wetter	11.84 Drier	15.04 Wetter	4.95	4.46 Normal	3.40 Drier	Wetter	The M_r data are inconclusive
Bull Mountain	13.62	11.18 Normal	8.72 Drier	13.35 Normal	4.51	4.94 Normal	4.12 Normal	Wetter	The M _r data are inconclusive
Loma	13.08	12.26 Normal	10.01 Drier	11.91 Drier	4.59	3.41 Drier	4.16 Drier	Drier	
Livingston	15.65	14.37 Drier	17.71 Wetter	15.00 Normal	6.07	6.99 Wetter	5.47 Drier	Wetter	Spring 97 M _r > Spring 98 M _r Should be other way because 96–97 is wetter than 97–98
Swan Lake	25.93	32.68 Wetter	26.04 Normal	20.47 Drier	16.92	23.16 Wetter	10.90 Drier	Wetter	Spring 97 M _r > Spring 98 M _r Should be other way because 96–97 is wetter than 97–98

Table 25. Annual and seasonal precipitation effects on resilient modulus (winter/spring precipitation is defined as occurring from October through April).

* Average of two stations, "Olney" and "Fortine 1N," that are on opposite sides of Dickey Lake. [†] Normals are for period of record (POR), 1987–2000. ** 'Normal' is anything within ±10% or less of the 30-year mean for 1971 to 2000.

	Mini	mum M _r va	subgr lues*	ade	of	um	um		Thaw-weakenin	g (critica	I) period	Spring	g (criti	cal peri were i	od) M _r n nade in	neasure :	ements	M _r m d	leasurem uring crit	ent w tical p	as made eriod
	96-	-97	97-	-98	M _r as % nimum	Month minim M _r	Month minim M _r	19	96–1997	1	997–1998	19	996–19	97	19	997–199	8	199	6–1997	199	7–1998
Location	Мра	psi	Мра	psi	Difference in larger mir	1996– 1997	1997– 1998	Base	Subgrade	Base	Subgrade	Feb.	Mar.	Apr.	Feb	Mar	Apr	Base	Subgrade	Base	Subgrade
Dickey Lake	86	12,500	49	7,100	91.7	April 97	April 98	March 20 to April 13	March 25 to April 15; to April 3 to April 16 (depending on depth)	Februar y 7 to March 15	February 15 to March 19; to March 14 to April 16 (depending on depth)	No	No	4/5/97 & 4/26/97	2/18/98	3/9/98	4/1/98	Yes	Yes	Yes	Yes
Wolf Point	65	9,400	75	10,900	72.2	May 97	May 98	April 21 to May 3	April 21 to April 25	Februar y 14 to March 22	February 21 to March 27	No	No	4/3/97 & 4/24/97	2/24/98	3/24/98	4/28/98	Yes	Yes	Yes	Yes
Sweetgrass	89	12,900	76	11,000	87.6	April 97	March 98	None	None	None	None	No	No	4/25/97	2/19/98	3/31/98	4/28/98	No criti- cal pe- riod	No critical period	No criti- cal pe- riod	No critical period
Scobey/Red -stone	61	8,800	54	7,800	87.2	June 97	May 98	March 20 to March 24	April 19 to April 25	?†	?	No	3/15/ 97	4/3/97 & 4/24/97	2/24/98	3/25/98	4/28/98	No	Yes	ND**	ND
East Glacier	196	28,400	135	19,600	90.0	March 97	April 98	April 2 to April 26	?	?	?	2/4/9 7	No	4/26/97	2/18/98 & 2/24/98	3/25/98 & 3/31/98	No	No	ND	ND	ND

Table 26. Resilient modulus measurements and when they were taken relative to the critical period.

	Mini	imum M _r va	subgi lues*	ade	of	d d	um of	-	Thaw-weakenin	g (critica	II) period	Spring	g (criti	cal peri were	od) M _r r made in	neasure :	ments	M,m d	easurem uring cri	ent w tical p	as made eriod
	96-	-97	97-	-98	M _r as % (nimum	Month minim Mr	Month minim Mr	19	96–1997	1	997–1998	19	996–19	97	19	997–199	8	199	6–1997	199	7–1998
Location	Mpa	psi	Mpa	psi	Difference in larger mir	1996– 1997	1997– 1998	Base	Subgrade	Base	Subgrade	Feb.	Mar.	Apr.	Feb	Mar	Apr	Base	Subgrade	Base	Subgrade
Alzada	89	12,900	84	12,200	86.3	April 97	March 98		No data	available	ŧ	_	_	_	_	_	_	_		_	
Bull Mountain	153	22,200	149	21,600	85.9	March 97	February 98		No data	a available	2	_	_	_	_	_	_	_	_	_	_
Loma	130	18,900	108	15,700	88.0	May 97	March 98		No data	a available	9	_	_	_	_	_	_		_		_
Livingston	111	16,100	92	13,300	88.0	March 97	February 98		No data	a available)	_			_	_		_	_	_	_
Swan Lake	171	24,800	145	21,000	87.7	April 97	March 98		No data	a available	•	_	_	_	_	_	_	_	_	_	_
* Minima † Critical ** No da	a are ta I perioc ta.	aken fr d did r	om Ta iot occ	bles 1 our or o	1 throug could not	h 20 above t be determ	; and where ined.	e more tha	an one measurei	ment was	made during the r	month,	values	are the	average	e for the	month	of mir	nimum.		

‡ Temperature and moisture contents not available.

Estimating Resilient Modulus Data

The missing monthly subgrade moduli could be estimated from trying to fit a model to the field data. Examples of this procedure are shown in Figures 18 and 19. The model attempted to account for the effect of temperature and moisture content on the resilient modulus of the subgrade at Dickey Lake and East Glacier. The model of the following form was used:

$$M_{r} = k_{1}(T_{ref} - T)^{k_{2}} (\omega_{vol})^{k_{3}}$$

where

 M_r = resilient modulus (MPa).

- T_{ref} = reference temperature (20°C).
- T = temperature (°C).
- ω_{vol} = volumetric moisture content at top of subgrade (%)

 $k_1, k_2, k_3 = \text{constants.}$

Figure 18. Results of prediction of subgrade modulus at Dickey Lake.

Figure 19. Results of prediction of subgrade modulus at East Glacier.

For Dickey Lake (A-2-4 soil), a good fit was found when the following constants were used: $k_1 = 105$, $k_2 = 0.2$, and $k_3 = -0.4$. Note that this model indicates a reduction in the subgrade modulus as the moisture content increases during the spring thaw period. The model predicts a subgrade modulus of approximately 47 MPa. The non-frost and recovered moduli are around 90 MPa. During the winter, the model predicts the subgrade modulus to average around 350 MPa. For East Glacier, the model also predicts a reduction in the subgrade modulus, as indicated by the field measurements (Figure 19). The reduction is approximately 50% of its non-frost value. For East Glacier (an A-6 soil), $k_1 = 200$, $k_2 = 1.3$, and $k_3 = -0.7$.

Similar models for other soils could be developed if sufficient data becomes available in the future.

The monthly subgrade modulus and relative damage for the test sites are presented in Tables 27, 28, 29, and 30. For the months where a back-calculated subgrade modulus is unavailable, a best guess is used, based on existing data and values from the models. We found that when the winter resilient modulus was increased by a factor of 5, the effect on the relative damage was insignificant.

Subsequently, the effective resilient modulus is only increased by approximately 10%. However, these results should be validated with additional FWD testing.

Based on our experience, we have adjusted the subgrade modulus downwards for sites where the precipitation data suggests that the subgrade was experiencing a drier than normal season. For design, the following effective subgrade resilient modulus can be used (see Table 31). These values are the seasonal average values, slightly rounded; and the recommended modulus is the average of the two seasonal values, except when only one season is available. The effective resilient modulus table is based on available data. The values look high, but the available data cannot support lower values. These values should be used with caution, and they should be validated with additional FWD testing.

Location	1996–	1997 M _r	1997–	1998 M _r	Recomm	ended M _r
Location	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)
Dickey Lake	2400	16500	1750	11900	2100	14300
Wolfpoint	1945	13300	2150	14600	2100	14300
Sweetgrass	2275	15700	2350	16200	2300	15900
Scobey/ Redstone	1650	11400	1600	11000	1650	11200
East Glacier	5750	39600	5800	40000	5800	39800
Alzada	2550	17600	2300	15600	2400	16500
Bull Mountain	4375	30200	3150	21700	3800	26000
Loma	3250	22400	2750	18800	3000	21000
Livingston	2925	20200	Insufici	ent Data	2950	20200
Swan Lake	5050	34800	3850	26500	4450	30700

Table 27. Effective subgrade resilient modulus.

	Dickey Lake				Wolf Po	pint		Sweetg	rass	Sc	obey/Red	dstone		East Gla	cier
	Mr		114	Mr		u _f	I	Mr	117	Mr		114	Mr		114
	(MPa)	(psi)	u	(MPa)	(psi)		(MPa)	(psi)	ur	(MPa)	(psi)	u	(MPa)	(psi)	ur
Sep	122	17,694	0.0163	67	9,717	0.0244	109	15,809	0.0216	55	7,977	0.1043	253	36,693	0.0030
Oct	79	11,458	0.0451	84	12,183	0.0450	105	15,228	0.0232	55	7,977	0.1043	270	39,159	0.0026
Nov	96*	13,923	0.0287	200	29,007	0.0052	200	29,007	0.0052	200	29,007	0.0052	800	116,026	0.0002
Dec	159	23,060	0.0089	329	47,716	0.0016	300	43,510	0.0020	400	58,013	0.0010	1000	145,033	0.0001
Jan	287	41,624	0.0023	300	43,510	0.0020	300	43,510	0.0020	400	58,013	0.0010	2000	290,065	0.0000
Feb	271	39,304	0.0026	300	43,510	0.0020	300	43,510	0.0020	400	58,013	0.0010	2000	290,065	0.0000
Mar	193	27,991	0.0057	150	21,755	0.0102	235	34,083	0.0036	1488	215,809	0.0000	1500	217,549	0.0000
Apr	86	12,473	0.0373	137	19,869	0.0126	89	12,908	0.0339	178	25,816	0.0069	196	28,426	0.0055
May	95	13,778	0.0007	65	9,427	0.0702	90	13,053	0.0337	67	9,717	0.0652	191	27,701	0.0058
Jun	99	14,358	0.0037	73	10,587	0.0537	95	13,778	0.0297	61	8,847	0.0816	169	24,511	0.0078
July	134	19,434	0.0133	73	10,587	0.0537	121	17,549	0.0167	61	8,847	0.0816	219	31,762	0.0042
Aug	118	17,114	0.0177	64	9,282	0.0732	59	8,557	0.0896	55	7,977	0.1043	231	33,503	0.0064
Summation			0.2338			0.3884			0.2633			0.5574			0.0306
Average			0.0195]		0.0324			0.0219			0.0465			0.0026
Mr			16461 psi]		13227 psi			15641 psi			11319 psi			39527 psi

Table 28. Monthly subgrade soil modulus and relative damages at Dickey Lake, Wolf Point, Sweetgrass,Scobey/Redstone and East Glacier (1996–1997).

* Data in italics are estimated values.

		Alzad	а		Bull M	tn		Loma	a		Livingst	on		Swan La	ike
	Mr		ц	Mr		112	N	1 _r	ц	Mr		ц	Mr		ц
	(MPa)	(psi)	ut	(MPa)	(psi)	u	(MPa)	(psi)	ut	(MPa)	(psi)	ut	(MPa)	(psi)	ut
Sept	112	16,244	0.0050	268	38,869	0.0027	132	19,144	0.0137	121	17,549	0.0168	229	33,212	0.0038
Oct	99	14,358	0.0265	142	20,595	0.0115	77	11,168	0.0479	121	17,549	0.0168	229	33,212	0.0038
Nov	150*	21,755	0.0102	322	46,701	0.0017	130	18,854	0.0142	121	17,549	0.0167	350	50,761	0.0014
Dec	379	54,967	0.0012	325	47,136	0.0017	247	35,823	0.0032	300	43,510	0.0020	400	58,013	0.0010
Jan	379	54,967	0.0012	325	47,136	0.0017	452	65,555	0.0008	300	43,510	0.0020	400	58,013	0.0010
Feb	379	54,967	0.0012	325	47,136	0.0017	452	65,555	0.0008	288	41,769	0.0000	400	58,013	0.0010
Mar	238	34,518	0.0035	153	22,190	0.0098	198	28,716	0.0053	111	16,099	0.0207	384	55,693	0.0010
Apr	89	12,908	0.0022	174	25,236	0.0072	141	20,450	0.0118	130	18,854	0.0143	171	24,801	0.0071
May	96	13,923	0.0288	202	29,297	0.0051	130	18,854	0.0142	129	18,709	0.0146	202	29,297	0.0027
Jun	103	14,938	0.0243	196	28,426	0.0055	136	19,724	0.0127	165	23,930	0.0082	193	27,991	0.0018
July	97	14,068	0.0277	216	31,327	0.0044	155	22,480	0.0095	121	17,549	0.0167	194	28,136	0.0032
Aug	106	15,373	0.0089	211	30,602	0.0046	147	21,320	0.0106	124	17,984	0.0159	217	31,472	0.0018
Sum- mation			0.2016			0.0576			0.1154			0.1469			0.0414
Average]		0.0168			0.0048			0.0096			0.0122			0.0034
Mr			17546 psi			30121 psi			22315 psi			20113 psi			34730 psi

Table 29. Monthly subgrade soil modulus and relative damages at Alzada, Bull Mountain, Loma, Livingston, and Swan Lake (1996–1997).

* Data in italics are estimated values.

Month	l	Dickey L	ake	,	Wolf Poir	nt	:	Sweetgras	SS	Sco	obey/Red	stone		East Glac	ier
	Mr		п.	N	l _r	п.	Ν	/I _r	п.	Mr		п.	Mr		
	(MPa)	(psi)	ur	(MPa)	(psi)	ut	(MPa)	(psi)	ut	(MPa)	(psi)	ut	(MPa)	(psi)	uţ
Sep	132	19,144	0.0138	103	14,938	0.0244	109	15,809	0.0213	68	9,862	0.0630	275*	39,884	0.0025
Oct	90	13,053	0.0338	103	14,938	0.0244	112	16,244	0.0200	74	10,732	0.0523	275	39,884	0.0025
Nov	63	9,137	0.0766	103	14,938	0.0246	112	16,244	0.0200	89	12,908	0.0341	277	40,174	0.0025
Dec	99*	14,358	0.0268	157	22,770	0.0092	132 [†]	19,144	0.0137	120	17,404	0.0171	532	77,157	0.0005
Jan	99	14,358	0.0268	157	22,770	0.0092	152	22,045	0.0099	120	17,404	0.0171	532	77,157	0.0005
Feb	99	14,358	0.0266	157	22,770	0.0092	152	22,045	0.0099	120	17,404	0.0170	532	77,157	0.0005
Mar	137	19,869	0.0126	162	23,495	0.0085	76	11,022	0.0496	152	22,045	0.0098	135	19,579	0.0131
Apr	49	7,107	0.1371	111	16,099	0.0207	92	13,343	0.0316	55	7,977	0.1060	135	19,579	0.0130
May	89	12,908	0.0343	75	10,877	0.0504	117	16,969	0.0181	54	7,832	0.1083	135	19,579	0.0130
Jun	79	11,458	0.0445	80	11,603	0.0444	109	15,809	0.0213	60	8,702	0.0858	135	19,579	0.0130
July	109	15,809	0.0213	80	11,603	0.0439	110	15,954	0.0210	87	12,618	0.0362	135	19,579	0.0130
Aug	98	14,213	0.0273	80	11,603	0.0439	111	16,099	0.0204	55	7,977	0.1043	135	19,579	0.0130
Sum- mation			0.1242			0.2065			0.0614			0.1494			0.0075
Average			0.0414			0.0258			0.0205			0.0498			0.0025
Mr			11897 psi			14581 psi			16121 psi			10984 psi			39941 psi

Table 30. Monthly subgrade soil modulus and relative damages at Dickey Lake, Wolf Point, Sweetgrass, Scobey/Redstone and EastGlacier (1997–1998).

* Data in italics are estimated values. [†] This is a mid-point value between 112 and 152.

	Alzada				Bull Mt	n		Loma		I	Livingsto	on		Swan La	Lake		
Month	N	lr	IL.	Ν	/I _r	ц	Μ	r	Uf	l	Mr	1r II.		Mr			
	(MPa)	(psi)	ut	(MPa)	(psi)	uţ	(MPa)	(psi)		(MPa)	(psi)	uf	(MPa)	(psi)	uţ		
Sep	114	16,534	0.0193	135	19,579	0.0130	135	19,579	0.0130		In		177	25,671	0.0069		
Oct	114	16,534	0.0193	134	19,434	0.0131	135	19,579	0.0130		suffi		177	25,671	0.0069		
Nov	97	14,068	0.0282	209	30,312	0.0047	104	15,083	0.0241		cier		189	27,411	0.0060		
Dec	116*	16,824	0.0185	167	24,220	0.0080	170	24,656	0.0076				189	27,411	0.0060		
Jan	116	16,824	0.0185	167	24,220	0.0080	170	24,656	0.0076		ata		213	30,892	0.0045		
Feb	108	15,664	0.0220	149	21,610	0.0104	170	24,656	0.0077	92	13,343	0.0316	213	30,892	0.0045		
Mar	84	12,183	0.0394	160	23,205	0.0088	108	15,664	0.0217				145	21,030	0.0111		
Apr	114	16,534	0.0193	239	34,663	0.0035	135	19,579	0.0130				177	25,671	0.0069		
May	114	16,534	0.0193	210	30,457	0.0047	135	19,579	0.0130		=		177	25,671	0.0069		
Jun	114	16,534	0.0193	374	54,242	0.0012	135	19,579	0.0130		nsuf		177	25,671	0.0069		
July	114	16,534	0.0193	216	31,327	0.0044	135	19,579	0.0130		ficie		177	25,671	0.0069		
Aug	114	16,534	0.0193	211	30,602	0.0046	135	19,579	0.0130		int E		177	25,671	0.0069		
Sum- mation			0.0668			0.0309			0.0577)ata				0.0129		
Average	1		0.0223			0.0103			0.0144						0.0065		
Mr			15540 psi			21668 psi			18734 psi						26479 psi		

Table 31. Monthly subgrade soil modulus and relative damages at Alzada, Bull Mountain, Loma, Livingston. and Swan Lake (1997–1998).

* Data in italics are estimated values.

SUMMARY AND RECOMMENDATIONS

Road Rater and FWD deflection, moisture, and temperature data were collected from several sites in Montana and were used to evaluate the potential for thaw weakening. The pavement structure consisted of variable thicknesses of asphalt concrete and base over different kinds of subgrade. The base courses mostly graded between an A-1-a and A-1-b. The exception was East Glacier, where the base course was classified as an A-4 soil. The percentage of fines in the base (except for East Glacier) varied between 8 and 15%. The subgrades at these sites were variable, ranging among A-1-b, A-2-4, A-4, and A-6. Water table locations were not available from these sites.

Because of instrumentation malfunction or problems with data collection, moisture and temperature data were limited to the northern half of the state. The deflection data taken were poor and appeared to miss the critical spring thaw period during both spring seasons. These poor data are a result of the limitations of the system's load application. The highest deflections in most cases were in the 6 to 8 mil range. The highest load used was 18 kN (4 kips).

Based on the moisture data, the base course layers at Dickey Lake, Wolf Point, Scobey/Redstone, and East Glacier are prone to thaw weakening. Deflection data indicate that the base at Bull Mountain, Swan Lake, and Scobey/Redstone may be prone to thaw weakening. The subgrade at Dickey Lake, East Glacier, Bull Mountain, Swan Lake, and Scobey/Redstone may also be prone to thaw weakening. The length of thaw weakening varied from 4 days (Scobey/Redstone) to 3 weeks (East Glacier).

Based on the limited deflection data, a tentative recommendation for effective subgrade modulus is provided. These values should be validated with additional Falling Weight Deflection (FDW) testing. These tests should be conducted using the Strategic Highway Research Highway (SHRP) protocol. In addition, prior to any testing, the Falling Weight Deflectometer should be calibrated. The numbers of sites could be reduced and more testing should be conducted during the spring thaw period. The authors suggest that an in-depth laboratory study on the resilient behavior of base courses be conducted and that the results from the field FWD tests be correlated to the laboratory results before any relations are presumed from the back-calculated base course moduli presented in this report.

60

In Appendix C, we have graphed the pertinent design data for all 10 sites as requested by MDT. Two sites have no plots for ground moisture content and soil temperatures, as the sensors for those sites failed early in the test period. The order of the graphs is: subgrade modulii, sub-grade moisture contents, precipitation, and temperature. Each is presented as a function of the time of year; beginning in October and running through September to allow clear definition of the transition from frozen to thawing to thawed states. For each site, a table of the base and sub-grade soil gradations and plasticity index follow the graphs.

REFERENCES

- AASHTO (1993) *Guide for Design of Pavement Structures*. Washington, DC: American Association of State Highway & Transportation Officials.
- AASHTO (2002) Standard Specifications for Transportation Materials and Methods of Testing,
 22nd Edition, The Materials Book. Washington, DC: American Association of State
 Highway & Transportation Officials.
- Asphalt Institute (1982) Research and development of Asphalt Institute's Thickness Design Manual (MS-1), 9th edition, Research Report No. 82-2.

Foundation Mechanics, Inc. (no date) Road Rater system specifications.

- Janoo, V.C., R. Eaton, and L. Barna (1997) Evaluation of airport subsurface materials, CRREL Special Report 97-13.
- Shepherd, K.L., and J.L. Vosen (1997) Spring thaw weakening: design impact and load restriction impact. MDT Research Project, August.

APPENDIX A: TEMPERATURE-MOISTURE DATA

Figure A-1. Moisture plots for Dickey Lake.

Figure A-2. Moisture plots for Wolf Point.

Figure A-3. Moisture plots for Wolf point.

Figure A-4. Moisture plots for Sweetgrass.

•

Figure A-5. Moisture plots for Sweetgrass.

Figure A-6. Moisture plots for Redstone.

Figure A-7. Moisture plots for Redstone.

Figure A-8. Moisture plots for East Glacier.

Figure A-9. Moisture plots for East Glacier.

Figure A-10. Temperature plots for Dickey Lake.

Figure A-11. Temperature plots for Wolf Point.

Figure A-12. Temperature plots for Wolf Point.

Figure A-13. Temperature plots for Sweetgrass.

Figure A-14. Temperature plots for Sweetgrass.

Figure A-15. Temperature plots for Redstone.

Figure A-16. Temperature plots for Redstone.

Figure A-17. Temperature plots for East Glacier.

Figure A-18. Temperature plots for East Glacier.

APPENDIX B: BACK-CALCULATED MODULUS

Alzada

Figure B-1. Back-calculated base modulus as a function of time for Alzada.

Figure B-2. Back-calculated subgrade modulus as a function of time for Alzada.

Bull Mountain

Figure B-3. Back-calculated base modulus as a function of time for Bull Mountain.

Figure B-4. Back-calculated subgrade modulus as a function of time for Bull Mountain.

Livingston

Figure B-5. Back-calculated base modulus as a function of time for Livingston.

Figure B-6. Back-calculated subgrade modulus as a function of time for Livingston.

Wolf Point

Figure B-7. Back-calculated base modulus as a function of time for Wolf Point.

Figure B-8. Back-calculated subgrade modulus as a function of time for Wolf Point.

Swan Lake

Figure B-9. Back-calculated base modulus as a function of time for Swan Lake.

Figure B-10. Back-calculated subgrade modulus as a function of time for Swan Lake.

Figure B-11. Back-calculated base modulus as a function of time for Loma.

Figure B-12. Back-calculated subgrade modulus as a function of time for Loma.

East Glacier

Figure B-13. Back-calculated base modulus as a function of time for East Glacier.

Figure B-14. Back-calculated subgrade modulus as a function of time for East Glacier.

Sweetgrass

Figure B-15. Back-calculated base modulus as a function of time for Sweetgrass.

Figure B-16. Back-calculated subgrade modulus as a function of time for Sweetgrass.

Scobey/Redstone

Figure B-17. Back-calculated base modulus as a function of time for Scobey/Redstone.

Dickey Lake

Figure B-19. Back-calculated base modulus as a function of time for Dickey Lake.

APPENDIX C: DESIGN INFORMATION

The volumetric moisture content on the following graphs can be converted to gravimetric moisture content by dividing the volumetric moisture content by the specific gravity of the material. Typical specific gravities are on the order of 2.70, plus or minus not more than 0.10.

Dickey Lake

0 11	5.0 in.	127 mm	AC						
Structure:	17 in.	432 mm	crushed BC						
Grain size	Subgrade						Base		
Depth (in.))	23	32	46	57.8	63	0 to 6	6 to 12	12 to 17
Depth (mm)		584	813	1168	1468	1600	0 to 152	152 to 305	305 to 432
US sieve designation	mm		Percent finer						
4	101.600	100	100	100	100	100	100	100	100
3.5	88.900	100	100	100	100	100	100	100	100
3	76.200	100	100	100	100	100	100	100	100
2.5	63.500	100	100	100	100	100	100	100	100
2	50.800	100	100	100	100	100	100	100	100
1.50	38.100	100	100	100	100	100	100	100	100
1.25	31.750	91	100	100	96	100	100	98	96
1.00	25.400	91	100	90	92	91	99	91	93
0.75	19.050	89	94	87	78	87	94	87	85
0.50	12.700	80	89	80	70	79	82	75	71
0.38	9.525	73	85	73	65	74	71	68	62
4	4.750	60	77	60	57	69	53	50	42
10	2.000	48	65	48	46	57	36	33	28
40	0.425	35	48	33	32	40	20	17	15
80	0.190	30	41	27	25	33	16	14	12
200	0.075	27.5	37.3	23.5	18.3	27.7	13.2	11.3	9.6
Liquid limit		19	22	22	22	20	NP*	NP	NP
Plastic limit		NP	20	20	19	18	NP	NP	NP
Plasticity index		NP	2	2	3	2	NP	NP	NP
AASHTO class		A-2-4 (0)	A-4 (0)	A-1-b (0)	A-1-b (0)	A-2-4 (0)	A-1-a(0)	A-1-a(0)	A-1-a(0)

Table C-1. Gradation characteristics for base and subgrade at Dickey Lake

Wolf Point

Otraveture	6 in.	152 mm	AC						
Structure:	6 in.	152 mm	crushed BC						
Grain size		Subgrade				Base			
Depth (in.)		Top 24	Below 24	60	Тор 36	0 to 6	0 to 6		
Depth (mm)		610	>610 mm	1524	914	0 to 152	0 to 152		
US sieve designation	mm	Percent finer							
4	101.600								
3.5	88.900								
3	76.200								
2.5	63.500			100					
2	50.800			98	100	100	100		
1.50	38.100	100	100	98	99	100	97		
1.25	31.750	99	100	95	99	100	95		
1.00	25.400	98	99	93	97	99	92		
0.75	19.050	98	99	92	96	92	87		
0.50	12.700	97	97	90	94	80	75		
0.38	9.525	96	97	89	93	68	65		
4	4.750	95	95	87	91	50	47		
10	2.000	92	93	86	89	42	39		
40	0.425	87	89	82	85	33	32		
80	0.190	78	78	71	72	16	22		
200	0.075	64.8	65.2	61.2	56.2	11.9	15.4		
Liquid limit		35	35	46	47	NP*	20		
Plastic limit	1	16	16	19	21	NP	NP		
Plasticity index		19	19	27	26	NP	NP		
AASHTO class		A-6 (10)	A-6 (10)	A-7-6 (14)	A-7-6 (12)	A-1-b(0)	A-1-b(0)		
L	1	- \ -7	- (-/	- \ -/	- (-/	- (- /	- \ - /		

 Table C-2. Gradation characteristics for base and subgrade at Wolf Point.

Sweetgrass

Chruchuro	13 in.	330 mm	AC						
Structure:	19 in.	483 mm	crushed BC						
Grain size		Subgrade		Base					
Depth (in.)		24 to 6	36 to 60	0 to 6	6 to 24	6 to 24	12 to 18		
Depth (mm)		610 to 1600	914 to 1524	0 to 152	152 to 610	152 to 610	305 to 457		
US sieve designation	mm	Percent finer							
4	101.600								
3.5	88.900								
3	76.200								
2.5	63.500				100				
2	50.800	100	100		98				
1.50	38.100	99	99	100	94	100	100		
1.25	31.750	99	98	99	92	95	93		
1.00	25.400	99	96	96	86	88	88		
0.75	19.050	99	94	88	79	77	82		
0.50	12.700	98	92	76	68	69	70		
0.38	9.525	97	91	71	62	63	65		
4	4.750	96	89	56	50	50	52		
10	2.000	92	79	42	42	40	42		
40	0.425	85	69	20	26	19	33		
80	0.190	80	62	11	18	12	16		
200	0.075	68.2	46.7	7.5	13.4	8.8	11.8		
Liquid limit		36	29	NP	27	NP*	21		
Plastic limit]	21	24	NP	23	NP	NP		
Plasticity index		15	5	NP	4	NP	NP		
AASHTO class		A-6 (9)	A-4 (10)	A-1-a(0)	A-1-a(0)	A-1-a(0)	A-1-b(0)		

 Table C-3. Gradation characteristics for base and subgrade at Sweetgrass.

Scobey / Redstone

Structure	6 in.	152 mm	AC		
Structure.	5.5 in.	140 mm	crushed BC		
Grain size		Subgrade		Base	
Depth (in.)		60± 12 to 36		6 to 12	
Depth (mm)		610	813	152 to 305	
US sieve designation	mm		er		
4.00	101.6				
3.50	88.9				
3.00	76.2				
2.50	63.5				
2.00	50.8			100	
1.50	38.1	100	100	97	
1.25	31.75	100	99	95	
1.00	25.40	99	98	92	
0.75	19.05	99	98	87	
0.50	12.70	97	97	75	
0.38	9.53	97	96	65	
# 4	4.75	95	95	47	
# 10	2.00	93	92	39	
# 40	0.425	89	87	32	
# 80	0.190	78	78	22	
# 200	0.075	65.2	64.8	15.4	
Liquid limit		49	32	20	
Plastic limit		28	22	NP*	
Plasticity index		21	10	NP	
			1		
AASHTO class		A-6 (10)	A-6 (10)	A-1-b (0)	

 Table C-4. Gradation characteristics for base and subgrade at Scobey/Redstone.
East Glacier

	3 in.	76 mm	AC		
Structure:	8 in.	203 mm	СТВ		
	15 in.	381 mm	crushed BC		
Grain size			Base		
Depth (in.		26 to 60	26 to 60	26 to 60	11 to 26
Depth (mm)		660 to 1524	660 to 1524	660 to 1524	279 to 660
US sieve designation	mm		Percent	finer	
4.00	101.6				
3.50	88.9				
3.00	76.2				
2.50	63.5				
2.00	50.8	100			
1.50	38.1	99			
1.25	31.75	98			
1.00	25.40	97			
0.75	19.05	96		100	
0.50	12.70	95		100	
0.38	9.525	94		100	100
# 4	4.750	93	100	99	99
# 10	2.000	89	94	98	93
# 40	0.425	84	89	97	88
# 80	0.190	80	87	96	87
# 200	0.075	73.6	82.2	88.4	84.2
Liquid limit		49	32	30	29
Plastic limit		28	22	20	21
Plasticity index		21	10	10	8
AASHTO class		A-7-6 (16)	A-4 (8)	A-4 (10)	A-4(6)

 Table C-5. Gradation characteristics for base and subgrade at East Glacier.

Alzada

Figure C-6. Design data for Alzada.

Structure	9.25 in.	235 mm	"PMS"		
Structure:	23.75 in.	603 mm	granular base		
sum	33 in.	838 mm			
Grain Size		Subarada	Basa		
Depth (in.)		unreported	unreported		
Depth (mm)		•	•		
US sieve designation	mm	Percent finer			
4.00	101.6				
3.50	88.9				
3.00	76.2				
2.50	63.5		100		
2.00	50.8		99		
1.50	38.1		99		
1.25	31.75	100	97		
1.00	25.40	99	96		
0.75	19.05	99	93		
0.50	12.70	97	89		
0.38	9.525	96	86		
# 4	4.750	93	78		
# 10	2.000	88	64		
# 40	0.425	78	27		
# 80	0.190	69	18		
# 200	0.075	57.7	12.6		
Liquid limit		37	19		
Plastic limit		18	18		
Plasticity index		19	1		
AASHTO class		A-6 (8)	A-1-b (0)		

 Table C-6. Gradation characteristics for base and subgrade at Alzada.

Bull Mountain

Figure C-7. Design data for Bull Mountain.

Structure	7.4 in.	188 mm	AC	
Structure.	13.8 in.	351 mm	granular BC	
sum	21.2 in.	538 mm		
Grain size		Subgrade	D	
Depth (in.)		22 to 58	58 to 94	Base Unreported
Depth (mm)		559 to 1473	1473 to 2388	
US sieve designation	mm		Percent finer	
4	101.600			
3.5	88.900			
3	76.200			
2.5	63.500		100	
2	50.800	100	99	
1.50	38.100	100	97	100
1.25	31.750	99	95	100
1.00	25.400	98	92	99
0.75	19.050	94	87	97
0.50	12.700	90	83	95
0.38	9.525	88	81	90
4	4.750	86	79	67
10	2.000	82	69	53
40	0.425	77	57	41
80	0.190	71	39	28
200	0.075	48.2	13.9	18.3
Liquid limit		NP*	NP	NP
Plastic limit		NP	NP	NP
Plasticity index		NP	NP	NP
AASHTO class		A-4 (0)	A-2-4 (0)	A-1-b (0)
* Non plantia				

Table C-7. Gradation characteristics for base and subgrade at Bull Mountain.

Non-plastic.

Livingston

1.8 Structure: 4.2		46 mm 107 mm	AC	
	20.4 in.	518 mm	0	
sum	26.4 in.	671 mm	Granular BC	
Grain size		Subgra	ade	Base
Depth (in.)		26 to 62	62 to 98	0 to 6
Depth (mm)		660 to 1575	1575 to 2489	0 to 152
US sieve designation	mm			Percent finer
4	101.600			
3.5	88.900	100		
3	76.200	96		
2.5	63.500	96	100	
2	50.800	91	95	100
1.50	38.100	82	90	92
1.25	31.750	80	87	88
1.00	25.400	77	81	79
0.75	19.050	71	72	69
0.50	12.700	62	59	59
0.38	9.525	58	52	53
4	4.750	51	43	41
10	2.000	45	38	35
40	0.425	37	30	18
80	0.190	29	22	9
200	0.075	20.3	16	5.5
Liquid limit		31	34	NP
Plastic limit		22	22	NP
Plasticity index		9	12	NP
AASHTO class		A-2-4 (0)	A-2-6 (0)	A-1-a (0)

Table C-8. Gradation characteristics for base and subgrade at Livingston.

Loma

Figure C-9. Design data for Loma.

		6.0 in.	152 mm	AC		
Structure:		27.0 in.	686 mm	granular BC		
	Sum	33.0 in.	838 mm			
Grain size		Subgrade	9	Base		
Depth (in.)		30 to 60		0 to 30		
		762 to 1524	Unreported	0 to 762	Unreported	
Depth (mm)				0.00.02		
US sieve designation	mm					
4	101.600					
3.5	88.900					
3	76.200					
2.5	63.500					
2	50.800					
1.50	38.100	100		100	100	
1.25	31.750	99	100	96	97	
1.00	25.400	98	100	88	90	
0.75	19.050	96	100	76	77	
0.50	12.700	94	99	62	64	
0.38	9.525	93	99	55	58	
4	4.750	91	99	44	47	
10	2.000	90	99	40	42	
40	0.425	85	98	23	23	
80	0.190	79	92	13	11	
200	0.075	51.7	22.7	9.4	7.3	
Liquid limit		24	NP*	NP	NP	
Plastic limit		21	NP	NP	NP	
Plasticity index		3	NP	NP	NP	
AASHTO class		A-4 (0)	A-2-4 (0)	A-1-a (0)	A-1-a (0)	
* NI						

Table C-9. Gradation characteristics for base and subgrade at Loma.

* Non-plastic.

Swan Lake

	4.8 in.	122 mm	AC						
Structure:	4.8 in.	122 mm	Pulverized AC						
	5.0 in.	127 mm	granular BC						
Sum	14.6 in.	371 mm							
Grain size			·	Subgr	ade			Base	Pulverized AC
Depth (in.)		26.5	32.0	38	46	58	73.5	10 to 15	5 to 10
Depth (mm)		673	813	965	1168	1473	1867	254 to 381	127 to 254
US sieve designation	mm								
4	101.600								
3.5	88.900								
3	76.200								
2.5	63.500								
2	50.800					100	100		
1.50	38.100		100			94	83		100
1.25	31.750	100	85		100	94	76	100	98
1.00	25.400	92	73		93	85	73	99	98
0.75	19.050	92	67	100	90	74	66	98	96
0.50	12.700	86	52	92	79	65	56	87	83
0.38	9.525	80	45	86	71	57	50	77	71
4	4.750	73	38	72	59	46	38	55	55
10	2.000	59	29	57	48	34	23	35	38
40	0.425	38	18	36	32	19	7	15	17
80	0.190	30	14	28	23	12	4	9	12
200	0.075	25.1	11.7	22.9	18.8	8.6	2.4	6.5	9
Liquid limit		NP*	NP	NP	NP	NP	NP	NP	NP
Plastic limit	[NP	NP	NP	NP	NP	NP	NP	NP
Plasticity index		NP	NP	NP	NP	NP	NP	NP	NP
AASHTO class * Non-plastic.		A - 2 - 4 (0)	A - 1 - a (0)	A - 1 - b (0)	A - 1 - b (0)	A - 1 - a (0)	A - 1 - a (0))A - 1 - a (0)	

 Table C-10. Gradation characteristics for base and subgrade at Swan Lake.

113